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Abstract—The paper addresses the problem of classify-
ing mechanical faults in rotating machines. In this context,
three operational classes are considered, namely: normal
(where the machine has no fault), unbalance (where the
machine load has its weight not equally distributed), and
misalignment (where the rotor and machine axes are
dislocated from its natural concentric position). A large
dataset consisting of 606 distinct scenarios is developed
for system training and testing, along with a preprocessing
strategy that improves data distribution among the three
classes considered. A classifier based on an artificial neural
network is described, achieving a global accuracy rate of
93.5%.

I. INTRODUCTION

Recent technological advances in the areas of signal
processing, circuit design, and computer science have
benefited several engineering fields such as mechanical,
civil, chemical, and so on. This work addresses the
problem of mechanical-fault classification in rotating
machines (pumps, motors, generators, and engines [1],
[2]). In some cases, even a small malfunctioning of
these devices can bring a large industrial process to
a complete stop, leading to unrecoverable economical
losses. To avoid this undesirable situation, monitoring
and diagnosis techniques may be employed to assist the
machine operators to detect or even predict such faults
at early stages [1]–[7].
Traditional machine monitoring is often performed di-

rectly on time-domain signals collected from accelerom-
eters. Such signals, however, tend to carry excessive
information for a proper system classification, leading to
the so-called curse of dimensionality effect [9]. There-
fore, a successful fault classification greatly depends

on the feature-extraction stage, which gathers enough
discriminative information for the three classes of inter-
est. The focus of this work is to describe an automatic
fault classifier using an artificial neural network (ANN)
capable of discriminating three kinds of operational
classes: normal, unbalance and misalignment [2], [7],
[8].
The organization of the paper is as follows: Section II

presents the mechanical framework employed in this
work, which includes a SpectraQuest RotorKit and three
accelerometers for signal acquisition; In Section III, the
feature extraction techniques are explained, including the
rotating-frequency estimation, which is a key aspect of
the system operating mode; In Section IV, the design and
practical issues for developing a large signal database
are described; Section V details the experimental results
achieved by the ANN classifier, including the stages of
system training and testing; Finally, Section VI con-
cludes the paper summarizing its main contributions.

II. SYSTEM DESCRIPTION
In order to obtain a controlled environment, all fault

scenarios considered in this work were implemented on
the SpectraQuest RotorKit depicted in Fig. 1.
Two operational faults were considered:
• System unbalancing: In this situation, the machine
load is not equally distributed in the angular di-
rection. In the SpectraQuest RotorKit, this fault is
implemented by positioning an extra load in one of
the peripheral holes of the disc shown in Fig. 2.
Different unbalancing situations can be created for
distinct rotating speeds or load weights. In this
work, all unbalanced signals deployed only the



Fig. 1. Rotorkit used in the fault simulation scenario.

center-hung position where the machine load is
placed on the axis between two bearings.

Fig. 2. Disc load used in the unbalance scenario. The central hole
is where the disc fixed to the axis and peripheral holes are used to
unbalance the disc weight.

• System misalignment: In this scenario, the rotor
and machine axes are not concentric, as depicted
in Fig. 3. Different misalignment scenarios can be
created by distinct rotating speeds, shifts directions
(horizontal or vertical), or shift amplitudes. In this
work, the misalignment effect was implement by
dislocating the rotor axis laterally or perpendicu-
larly to the plane where it is fixed.

In each fault situation, vibration signals were acquired
for 5.12 s using a Fs = 800 Hz sampling frequency,
totaling 4096 samples in each signal. Following these
conditions, in each machine configuration signals were
acquired from three accelerometers positioned along the
x (horizontal and along the machine axis), y (horizontal
and orthogonal to the machine axis), and z (vertical)
directions. The signals obtained from these sensors were
labeled sx(n), sy(n), and sz(n), respectively, and a
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Fig. 3. Misalignment explanation. The upper and the lower part show
the vertical and the horizontal misalignment, respectively. The solid
“hammer”-shape objects represent the rotor and axis to be connected,
where the “hammer” head is the connection between them.

fourth st(n) trigger signal was also acquired allowing
a direct rotating-speed estimation, as detailed below.

III. FEATURE EXTRACTION

A. Rotating Frequency Estimation

The rotating speed can be estimated from the N -
point discrete Fourier transform (DFT) St(k) of the
trigger signal st(n). In some cases, however, the machine
failure can introduce spectral peaks with more energy
than the peak associated to the fundamental frequency
of st(n). Therefore, to cope with this problem, a two-
step estimation algorithm was considered.
An initial frequency estimate is determined as

fa =
kaFs

N
Hz, (1)

where ka is the frequency index associated to the most
significant peak of |St(k)|. Once such a peak is detected,
then the values of St(k) are set to zero for (ka − 3) ≤
k ≤ (ka + 3). This procedure of peak detection-and-
removal is repeated four times, generating four frequency
candidates, namely fa, fb, fc, and fd. Based on these



values, the final rotating-speed estimate Rf is chosen as

Rf = min {fa, fb, fc, fd}. (2)

B. Extracted Data Feature
The extracted features of interest are obtained from

the three accelerometer signals sx(n), sy(n), and sz(n),
and, for the machine faults considered here, are heavily
dependent on the rotating frequency Rf [8].
Once the rotating speed is estimated, as detailed

above, we then determine the magnitude of the spectrum
of the three accelerometer signals at the frequencies Rf ,
2Rf and 3Rf .
The complete feature vector also incorporates the

value of Rf , totaling only 10 features to describe the
complete machine setup. This dimensionality reduction
is very useful to remove excessive data which does not
carry discriminating information for the classification
problem at hand. In addition, by reducing the amount
of input data one also reduces the overall computational
complexity associated to the classifier learning process.

IV. DATABASE
An important step on the designing process of a given

classifier is the database development. Such database
must represent the process of interest on a faithful and
consistent manner, containing enough information to
characterize each of the classes of interest.
The database deployed in this work considered the

following machine operating conditions:
• Normal: In this class, 34 different rotating speeds
were considered within the interval 9.98 ≤ Rf ≤
59.76 Hz.

• Unbalance: In this class, several scenarios with load
weights [4, 10, 15, 20, 24, 30, 35] g were considered,
each with [34, 34, 33, 33, 30, 34, 34] different rotat-
ing speeds, respectively, totaling 232 unbalance
signals.

• Misalignment: In this class, both vertically and hor-
izontally shifts were considered. In particular, verti-
cally misaligned signals included distance shifts of
[0.36, 0.83, 1.31, 1.59, 1.86, 2.36] mm with 34 dif-
ferent speeds each, providing a total of 204 signals;
meanwhile, the horizontally misaligned signals in-
cluded only 4 different distances, [0.5, 1, 1.5, 2] mm,
all of them also with 34 frequencies, generating 136
data signals.

Therefore, the whole database includes a total of 606
distinct scenarios, 34 of which from the normal class,
232 from the unbalancing class, and 340 from the

misalignment class. Each scenario, as mentioned above,
has one trigger and three accelerometer signals, acquired
at a 800 Hz sampling frequency along 5.12 s.

V. EXPERIMENTAL RESULTS

A. Rotating Frequency Estimation

Validation of the automatic approach for the rotating-
frequency estimator described in Section III-A is per-
formed comparing the actual (as measured by a fre-
quency analyzer during signal acquisition) and the esti-
mated rotating frequencies, Rf . Results are as observed
in Fig. 4, which indicates the high accuracy achieved
by the proposed method that yields a mean squared
error (MSE) of only 0.15 Hz2, with an error variance
of σ2 = 0.02 Hz2.
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Fig. 4. Comparison between the actual (◦) and automatically
estimated (×) rotating frequencies.

B. Fault Classification

A multi-layer perceptron ANN classifier was devised
with an input layer of dimensionality 10, the same as
the feature vector, a 10-neuron hidden layer, and an
output layer with 3 neurons using the hyperbolic-tangent
sigmoid as activation function. Each neuron in the output
layer represents one class to be recognized.
The whole 606-signal database was separated in three

disjoint sets with approximately 70% signals for training,
10% for validation, and 20% for test. The validation
subset is employed to avoid overtraining, that is, to
avoid the ANN to become excessively specialized on the
training signals thus loosing its generalization capability.
The ANN learning process, also called training, was
performed with the so-called backpropagation algorithm.



The initial test results presented in Table I indicate an
overall classification performance of 92.7%. This overall
rate, however, overshadows the fact that the no signal
from the ‘normal’ class was correctly classified, most
certainly due to the small number of signals (only 34 in
the test database) associated to this class in comparison
to the classes (there are 232 unbalanced and 340 mis-
aligned signals within the test database, for instance).
In such a case, the classifier system tends to overlook
the under-represented class, without penalizing much the
overall classification rate, as noticed here. Very similar
overall and class-specific results were observed also for
the training and validation databases where the ‘normal’
class is also misrepresented.

TABLE I
CLASSIFICATION PERFORMANCE X/Y FOR THE TEST DATABASE

WITH CLASSIFIER TRAINED WITH ORIGINAL TRAINING

DATABASE. IN THIS TABLE,X IS THE NUMBER OF RECOGNIZED

SIGNALS AND Y IS TOTAL NUMBER OF SIGNALS FOR THE TARGET

CLASS UNDER ANALYSIS.

Output Target Class
Class Normal Unbalance Misalignment
Normal 0/6 0/42 0/62
Unbalance 3/6 41/42 1/62
Misalignment 3/6 1/42 61/62

In order to avoid this class-dependent performance
one must reduce the difference in class representation
in each of the database subsets. In this work, we opted
to divide the 4096-sample normal signals into 8 smaller
512-sample signals, modifying the database to include
272 ‘normal’, 232 ‘unbalanced’, and 340 ‘misaligned’
operating scenarios.

TABLE II
CLASSIFICATION PERFORMANCE X/Y FOR THE TEST DATABASE

WITH CLASSIFIER TRAINED WITH THE INCREASED ‘NORMAL’
CLASS. IN THIS TABLE,X IS THE NUMBER OF RECOGNIZED

SIGNALS AND Y IS TOTAL NUMBER OF SIGNALS FOR THE TARGET

CLASS UNDER ANALYSIS.

Output Target Class
Class Normal Unbalance Misalignment
Normal 31/34 3/42 1/62
Unbalance 3/34 38/42 1/62
Misalignment 0/34 1/42 60/62

Table II presents the results for the classifier trained
with the increased ‘normal’ class. Although the final sys-
tem performance, 93.5%, did not improve significantly

compared to the previously tested classifier, the normal
class efficiency increased to 91.2%, while the unbalance
and misalignment decreased a little bit to 90.5% and
96.8%, respectively.

VI. CONCLUSION
This paper addressed the problem of classification

of rotating-machine failures, including unbalanced loads
and misaligned axes. A robust algorithm for rotating
speed, Rf estimation was described and validated. Fea-
ture extraction considered the spectrum magnitude atRf ,
2Rf and 3Rf along three accelerometer signals along x,
y, and z coordinate axes. A complete 606-signal database
was developed including 34 ‘normal’, 232 ‘unbalanced’,
and 340 ‘misaligned’ machine setups. A 3-layer ANN-
based classifier was designed, which achieved a 93%
recognition accuracy after balancing the dataset of each
class within the ANN training stage.
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