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Abstract - This paper presents a detailed study of four image descriptors (SURF, SIFT, BRISK and FREAK) in the context of real-time
detection of abandoned objects using a moving camera. In this scenario, captured frames are compared to a reference video, and noticeable
differences among the two videos are associated to an abandoned object. The image descriptors allow a simple and robust image representation,
retaining most relevant features for proper registration and alignment, enabling a comparison between two video frames corresponding to the
same scene. Performances of these fours schemes are assessed in terms of processing time and detection efficiency considering the OpenCV
implementations of the methods. A modification is also considered for the image descriptors, which restricts the correspondences between the
two images to the same representation scale. Experiments on three pairs of videos show the improvements achieved by the proposed system
configuration.

Keywords: object detection, automatic surveillance, cluttered environment, moving camera, image descriptors, SIFT, SURF, FREAK,
BRISK.

I. INTRODUCTION

Technology needs in terms of security, control and speed have
increased strongly in the last few decades. In response to this
challenge, many computer-vision solutions for production process
control, object detection and automatic guidance systems have been
developed. These allow, among others, risk reduction when operating
in hazardous environments, decreased costs and an overall perfor-
mance improvement. Among the many factors that contributed to this
technology leap, we may cite the continued growth of computing
and data-storage capabilities, as well as faster and more accurate
algorithms for these specific purposes.

One of the main challenges in automatic video surveillance is the
excess of data being processed, particularly when one considers the
real-time aspect to the application at hand. This obstacle is usually
overcome by using the so-called image descriptors that identify a
limited number of keypoints within a video frame. Ideally, the set
of keypoints constitutes a compact representation with the most
significant information from the original image. These keypoints
may then be employed, for instance, to determine a transformation
between two corresponding frames in the target and reference videos,
allowing proper video registration before the difference-detecting
stage. Finding the optimal transformation between two images is
usually a computationally intensive operation. Therefore, in order
to perform real-time detection, an efficient algorithm for this step
is paramount. This work investigates the performance of different
image descriptors in the context of abandoned object detection using
a moving camera. It explores the various parameters and specificities
of these four descriptors, searching for the best compromise between
detection accuracy and speed.

The main focus of this work is the comparison of four image
descriptors found in the literature in the context of abandoned-
object detection, namely: scale-invariant feature transform (SIFT, [1]);
speed-up robust features (SURF, [2]); binary robust invariant-scale
keypoints (BRISK, [3]); fast retina keypoint (FREAK, [4]). In ad-
dition, since the nature of the surveillance setup guarantees that the
camera views the two scenes to be matched at the same scale, we
investigate the use of scale restriction when matching the keypoints
in order to reduce the number of false matches. To present the
proposed contributions, this paper is organized as follows: Section II
describes the object-detecting system where the image descriptors
are employed. Section III summarizes the main characteristics of
the four image descriptors here evaluated. Section IV details the
comparative analysis of the image-descriptor performances in terms
of computational cost and detection efficiency. Section V investigates
the system performance when the proposed fixed-scale constraint is
imposed to the image registration stage and Section VI concludes the
paper emphasizing its main contributions.

II. OBJECT-DETECTION SYSTEM

The surveillance system employed in this work is described in [6].
The system uses a high-definition camera mounted on a robotic
platform that performs a linear back-and-forth motion to increase the
camera range. The video obtained in a first passage, after proper
validation, is used as a reference to which all subsequent videos are
compared in search of a new video event, such as the appearance
of an abandoned object. In this scenario, the newly acquired (target)
and reference videos can only be compared after precise time- and
space-alignment procedures are performed.

The system employed here differs from others found in the
literature [8]–[10] by not relying on any external trigger signal
to enforce synchronization between the videos. Instead, points of
interest (keypoints) are extracted from both videos and a search
for correspondences is performed between adjacent frames for each
video, allowing one to estimate the camera displacement up to a
constant offset. Then, the temporal alignment between the two videos
is estimated as the delay that maximizes the correlation between the
two motion models.

Ideally, synchronism between videos should provide sufficient
conditions to allow a sample-by-sample measurement of similarity
among the target and reference videos. However, a few imper-
fections such as vibration or friction cause the camera motion to
be different from footage to footage, thus requiring an additional
spatial registration stage between the two videos. For this purpose,
keypoint correspondences in synchronized frames are used to generate
a geometric transformation (homography) that maps one camera
view into the other. In this process, the random sample consensus
(RANSAC) algorithm [9] is employed to eliminate correspondence
outliers that may generate an improper geometric transformation. Due
to the linear nature of movement (the camera moves along a straight
rail), outlier removal is also performed by imposing a maximum 1 ◦

angle with the horizontal axis for all keypoint correspondences.

After the time- and space-alignment procedures, the target and
reference videos are compared through the normalized cross cor-
relation (NCC) function [9], and a threshold is used to generate a
binary mask that indicates possible abandoned objects. However, as
this calculation is independent of the intensity values the pixels of
the original image, there may be a large number of false-positive
regions. Thus, the NCC computation is restricted to regions where the
absolute difference between the frames is above a certain threshold.
To further reduce the effects of false positives the binary mask
undergoes a temporal voting process, where each mask pixel must
appear a minimum number of times in a given time interval.

III. IMAGE DESCRIPTORS

An image descriptor represents relevant visual features of an
image through a limited number of keypoints. Such features may be



used to compare images by finding corresponding points between
them. Among the image descriptors available, the most used are
SIFT [1], SURF [2], BRISK [3] and FREAK [4], which were devised
with similar functionalities. Generally speaking, these descriptors
work similarly by performing the four steps described below:

• Scale-Space Representation: Objects in real world have charac-
teristics in various levels of details, such as contours at low level
and texture at high level. An algorithm for automatic extraction of
image features must obtain information about the different aspects of
each object, since it does not have in general any prior knowledge
about the level of detail that should be used to interpret a given
image. Thus, most image descriptors use a scale-space framework that
generates a one-parameter family of images derived from the original,
with each member representing well a different detail level. This step
ensures that objects with different sizes or levels of degradation can
be recognized, as they present similar features at different scales.

• Interest Point Localization: In this stage salient points are
extracted from the scale-space representation, generating a compact
description of most important content features within the original im-
age. The extraction is performed by detecting the most representative
local maxima and minima in intensity. These will correspond to points
with a consistent relative position, such that similar objects in different
positions or sizes generate a similar set of salient points even when
in different images.

• Orientation Assignment: This step estimates the orientation (direc-
tion of maximum luminosity variation) for each keypoint identified in
the previous stage. This feature allows one to identify similar objects
with different relative orientations in multiple images.

• Keypoint Descriptor: Finally, a descriptor is determined for each
keypoint previously identified, providing a compact representation of
the most important image characteristics around that point. Thereby,
descriptors obtained from different images can be compared, allow-
ing the identification of similar features, which are associated to
point/region correspondences between the two images.

In the sequel we analyze the four descriptors used in this work
according to the above steps.

A. SIFT

The SIFT [1], [14] algorithm was one of the pioneers of the
scale-invariant image descriptors. It works through a 4-step feature
extraction for building the image descriptor, and its main character-
istics are:

• Scale-space extrema detection: The scale-space is generated by
applying a sequence of difference-of-Gaussian filters through multi-
ple scales, thus generating a sequence of filtered-and-downsampled
versions of the original picture.

• Keypoint localization: The SIFT keypoints are obtained by
searching the local maxima in a 9-point vicinity in the scale space,
excluding local maxima along image edges in order to avoid keypoint
mismatching.

• Orientation assignment: The orientation is assigned based on a
histogram of oriented gradients computed around each keypoint using
36 bins representing the 360-degree scale.

• Keypoint descriptor: The SIFT descriptor uses 4 orientation
histograms built over a 16 x 16 pixel area around the keypoint.

B. SURF

The SURF [2] algorithm is a widely-used scale- and rotation-
invariant descriptor which aims to work faster than SIFT while being
more reliable. It is similar to SIFT, with the main differences as
presented below:

• Scale-space representation: The SURF scale-space uses a bank of
pre-designed filters that can be applied in parallel, as opposed to the
cascade of Gaussian filters employed by the SIFT algorithm.

• Interest point localization: The maxima localization is done with
a speeded-up method called ‘fast-Hessian’, which uses an algorithm

know as integral Image to calculate the Hessian matrix, whose
determinant will characterize a local maximum.

• Interest-point description and matching: The keypoint orientation
is estimated with a Haar wavelet transform in both x and y directions
followed by a Gaussian (interpolation) filter centered at the keypoint.

• Keypoint descriptor: The descriptor is obtained by summing the
wavelet coefficients taken in 4 directions around the keypoint.

C. BRISK
The BRISK [3] algorithm, as the name suggests, is a binary image

descriptor that was designed to be as robust as SURF, but using much
less computational power. The main features of the method are:

• Scale-space representation: The scale-space representation is
obtained by downsampling the original image, and organizing the
resulting images into octaves and intra-octaves.

• Keypoint detection: The keypoint detection metric for the BRISK
algorithm is the same as the one from FAST (Features-from-
Accelerated-Segment-Test) [16] algorithm, which detects local max-
ima or minima as points that are brighter or darker than an arc of
contiguous pixels around it.

• Keypoint description: The BRISK descriptor consists of a 512-bit
array obtained by comparing point-to-point the intensity of samples
taken along a rotated circular pattern around the keypoint. If the
intensity of the first point is higher than the one of the second, then
the corresponding bit is set to 1; otherwise, it is set to 0.

D. FREAK
The FREAK [4] algorithm is a binary image descriptor inspired

in the human visual system. Its main properties are described below:

• Scale-space representation and keypoint detection: The method
essentially uses the same keypoint-detection scheme as the BRISK
algorithm.

• Keypoint descriptor: The most significant FREAK feature is
the retina-based sampling pattern, which is much denser around the
keypoint as opposed to the uniform BRISK pattern. The FREAK
descriptor is then built through a 1-bit difference-of-Gaussian method
applied to the samples around the keypoint.

E. General Comparison
Among the 4 descriptors presented above the SIFT was the first

one to be developed, quickly becoming the reference method to which
most subsequent proposals were compared. The SURF algorithm was
later introduced in an attempt to speed up the SIFT processing while
sustaining (and sometimes improving upon) the SIFT’s capability for
providing a compact image description. The BRISK algorithm is a
more recent method which uses a binary descriptor, thus saving both
storage space and time taken for a proper descriptor match. The
FREAK algorithm works as an evolution of BRISK, by providing
an even shorter binary descriptor, also reducing memory space and
simplifying the comparison stage, due to its human-retina-inspired
sample pattern around the keypoint.

For our object-detection application, the most important image-
descriptor characteristics are the processing speed (due to the real-
time nature of the system) and the final detection robustness. There-
fore, the performances of the 4 image descriptors above are assessed
according to speed and robustness in the subsequent sections of this
paper.

IV. PERFORMANCE ASSESSMENT OF IMAGE
DESCRIPTORS

The original detection system, described in [6], employed both
the SIFT and SURF methods with the default setup given by the
OpenCV library. Such configurations, however, were shown to be
too complex computationally for the system to operate in real time.
The main objective of this paper is to explore the various parameters
and specificities of the four methods presented in Section III in



order to improve the compromise between detection accuracy and
computational speed.

In an initial experiment, the 4 image descriptors were tested on
a short 500-frame target-reference video pair, allowing a general
comparison with respect to the number and accuracy of keypoint
matches, as depicted in Fig. 1. From this figure, one readily notices
that the SURF and BRISK algorithms generated much less improper
(inclined) keypoint correspondences than the SIFT and FREAK
algorithms, although all 4 methods yielded a significant amount of
proper (horizontal) keypoint matches. A similar result was observed
for the vast majority of frame pairs of the target and reference videos
employed here. In practice, the detection system can remove all
false matches by discarding the correspondences with an angle larger
than 1 degree, as the camera movement is considered to be strictly
horizontal.

(a) SIFT

(b) SURF

(c) BRISK

(d) FREAK

Figure 1: Comparison of keypoint matching with SIFT,
SURF, BRISK and FREAK descriptors.

A second experiment considered one complete target-reference
pair of videos, with the target video showcasing one abandoned
(‘coat’) object. The initial performance results were obtained using
the default parameters given by the OpenCV manual for the 4
descriptors. In all cases the processing time did not allow real-time
detection, and some parameter adjustment was performed to speed
up the descriptors while sustaining the system’s ability to detected
the object of interest. Table I summarizes the performances of the 4
descriptors with respect to the number of proper (horizontal) keypoint
matches and processing time 1, which takes into account the detection
of keypoints, descriptors, matching descriptor vectors and eventual
corrections as that of discarding the correspondences with an angle
larger than 1 degree. The table includes results for the SIFT and SURF
setups employed in the system from [6] along with the ones from the
4 modified descriptors proposed in this paper. From these results one

1Considering the C++ descriptor implementations available in the
OpenCV 2.4.8 library [5], using a 4-GB RAM MacBook Air, with the 10.9.2
IOS version and a 1.3-GHz Intel i5 processor.

can infer that, for the same overall object detection performance (as
validated in 2 other 1-object target videos), the original system was
able to detect more keypoints at the cost of a higher processing time.
After the fine tunning of the parameters from the 4 keypoint detectors,
we observe that the keypoint correspondence and processing time can
be significantly reduced, without any negative impact on the system’s
performance. This is particularly true in the case of the FREAK
algorithm which was able to reduce the processing time to 1/3 of
its original value.

It is important to notice that all these results were obtained using
the implementations of the keypoint detection methods from OpenCV
2.4.8. This version contains a series of improvements in the SIFT
algorithm to speed it up [7]. These improvements bridged the gap
betweeen the processing times from SIFT and SURF that is in general
reported in the literature. Suprisingly, the BRISK algorithm showed
to run more slowly than usually reported in the literature. This can
also be explained by its particular implementation in OpenCV 2.4.8,
not necessarily meaning it is slower than the other methods. Some
tests were made aiming to speed-up the BRISK algorithm by using
different parameter settings. However, one could just obtain gains
in speed of about 3%, but at the cost of the generation of only a
prohibitively low number of keypoints.

Table I: Average performance results of Image Descriptors
per frame.

Keypoint pairs Processing Time (ms)
SIFT 187,18 276,0
SURF 181,42 246,1

SIFT Optimized 170,56 168,5
SURF Optimized 80,43 99,5

BRISK 82,9 298,9
FREAK 35,03 72,8

A subjective evaluation of the overall detection system with each
of the 4 descriptors is illustrated in Figure 2 for a single frame of
the ‘coat’ target video. In this case, the marked region corresponds
to where the algorithm detects the abandoned object. Thus, good
detection implies a uniform marked region, centered on and covering
most of the object, without extending beyond its borders. One can
note that this is achieved for all 4 descriptors.

(a) SURF. (b) SIFT.

(c) BRISK. (d) FREAK.

Figure 2: Detection results using the 4 different descriptors
in a single frame of the ‘coat’ target video.

V. DETECTION IMPROVEMENT BY A SCALE RESTRICTION

As mentioned in Section II, the object-detection system compares
the target and reference videos in search for distinct regions which are
associated to a possible abandoned object. An important characteristic
of this setup is that all objects present in both videos should be
at the same scale. Therefore, we propose to discard any keypoint
match arising from different scales/octaves, thus increasing the system
robustness (by reducing the chances of false correspondences) and
processing speed (by reducing the search range for the keypoint
match). We refer to it as the Scale-Dependend (SD) implementation.



Using this scale restriction, we also investigated the elimination
of the 1-degree restriction to the keypoint correspondence inclination
(referred to as the rotation invariant - RI - implementation). This
is interesting because the robot vibrations can cause some camera
oscillation above this threshold. Another desirable characteristic of
getting rid of the angular restriction is that it also works with a more
generic camera movement, other than the back-and-forth horizontal
motion.

The proposed scale-dependent (SD) and rotation-invariant (RI)
modifications were implemented in the FREAK detector, both sepa-
retely and together. The FREAK detector was chosen because in the
tested OpenCV implemention of the methods it was the fastest and
was able to generate good object detection. The performance of the
resulting schemes was assessed with respect to the resulting number
of keypoint matches and processing time, with a similar procedure as
Table I, and is summarized in Table II. From this table, one concludes
that neither modification affects the processing time in a significant
manner. As expected, however, the RI-FREAK method generates a
larger number of undesirable matches, leading to an efficiency drop
on the detection system, as observed in Figure 3. In contrast, the SD-
FREAK is able to avoid undesirable correspondences, thus reducing
the total number of correspondences by about 20% while sustaining
the detection performance. The RISD-FREAK algorithm synergizes
the two modifications (namely, increased SD robustness by avoiding
false correspondences and increased movement flexibility associated
to the RI scheme) and yields a more robust system performance, as
also illustrated in Figure 4.

Table II: Average performance results of FREAK methods
per frame.

Keypoint pairs Processing Time (ms)
Original FREAK 35,03 72,8

RI FREAK 52,73 74,0
SD FREAK 29,74 72,9

RISD FREAK 40,37 73,1

(a) Original FREAK detector (b) RI FREAK detector

(c) SD FREAK detector (d) RISD FREAK detector

Figure 3: Detection of the different methods using FREAK.

(a) Original FREAK. (b) SD FREAK.

Figure 4: Detection of both FREAK methods for the same
frame.

VI. CONCLUSIONS

A comparative analysis of some of the most widely used image
descriptors (SIFT, SURF, BRISK and FREAK) is provided in the
context of real-time object detection in a cluttered environment.

Preliminary subjective results based on the OpenCV 2.4.8 im-
plemention indicated that a similar detection performance can be
achieved by all 4 methods, with the FREAK descriptor presenting
the fastest processing time. Two variations were then proposed to
the FREAK algorithm in order to increase its robustness in the
described system for abandoned object detection, by enforcing a
scale-dependent matching system. The scale restriction had the added
advantage of providing more flexibility on the camera movement,
since it allowed the elimination of the 1-degree restriction on the
matching stage.

When compared to the original FREAK method, the proposed
SD-FREAK scheme obtains similar qualitative results on the object-
detection application, at about 1/3 of the processing time for the
original system without imposing any movement-restriction on the
robotic platform.

These results allow real-time abandoned object detection, since
they make it possible to process about 15 frames per second while
performing keypoint detection, a sufficient frame rate for the proposed
detection application.
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