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Abstract—This paper investigates the problem of automatic detection
of rotating-machine faults based on vibration signals acquired during

machine operation. In particular, two new signal features, namely the
kurtosis and entropy, are considered along with main spectral peaks
to discriminate between several machine conditions: normal operation,
(vertical and horizontal) misalignment, unbalanced load and bearing
faults. Moreover, the inclusion of one set of three accelerometers for each

roller bearing associated to the system acquiring more vibration signals
also affects the generation of feature vector and is part of our proposal. In
order to evaluate the rotating machine fault classification, a database of

1951 fault scenarios with several different fault intensities and rotating
frequencies was designed and recorded, taking into consideration the
specificities of the proposed machine learning task. The artificial neural

networks recognition system employed in this work reached 95.8% of
overall accuracy, showing the efficiency of the proposed approach.

Keywords—Rotating machine, pattern classification, fault diagnosis,
feature extraction.

I. INTRODUCTION

The industrial scenario experienced a huge structural and orga-

nizational changes in recent years, requiring a high standard of

quality in their processes. On large companies with a great amount

of rotating machines and industrial equipment, it is vital to avoid

halting production due to mechanical faults. In order to accomplish

this aim, it is necessary to invest in the fault anticipation methods

to be conjugated with predictive maintenance practices. Due to the

gradual intensity increase and the random process characteristics in

rotating machinery fault signal, it is difficult to human beings observe

its early occurrence, making the pattern recognition a powerful tool

for dealing with this kind of data and appropriated to this diagnosis

task [1]–[4].

This work extends the research of [5], proposing a new feature

vector adding the kurtosis and entropy measures, which are originally

designed to address the bearing fault problems, and also with one

more set of accelerometers, i.e., one for each roller bearing. In order

to validate the proposal a new database was created, considering

the characteristics to be analysed. The idea is to develop a pattern

recognition system by using Artificial Neural Networks (ANN) [6] to

discriminate among the simulated rotating machine failures addressed

in the database and showing the effectiveness of the feature vector

proposal in the system accuracy.

The paper is structured as follows: Section II describes the rotating

machine fault emulation system, which is used in the database

design and recording, detailed in Section III. In Section IV, the

proposed feature vector is explained and compared with the original

implementation. Section V shows the efficiency of the proposed

approach applied to an even more complex recognition task than

the one presented in [5]. Finally, in Section VI, the conclusions of

the work are stated.

II. SYSTEM DESCRIPTION

The system consists in a vibration simulation workbench, known

as RotorKit Alignment Balance Vibration Trainer (ABVT) commer-

cialized by SpectraQuest. This equipment is designed to study the

dynamic of motors with shaft supported by roller bearings, allowing

the fault simulation of unbalanced mass, axes misalignment and

problems in roller bearings, among others.

The vibration signals are acquired from accelerometers assembled

on the bearings support measuring the signals in 3 orthogonal

directions: axial (x axis), tangential (y axis) and radial (z axis), as

shown in Fig. 1.

Fig. 1. Measurement directions of accelerometers and their position on the
bearings. The axes x, y and z are corresponding to the directions axial,
tangential and radial with respect to the shaft. The set of accelerometers
positioned in inner bearing is labelled as set 1 and in outer bearing is labelled
as set 2.

All simulation scenarios consider that the 2 bearings are simulta-

neously monitored by 2 separated sets of accelerometers, as indicated

in [7]. Fig. 1 details the inner and outer bearings, the closest and the

furthest bearings from the motor, respectively, and the accelerometer

sets assembled on the top of the bearings. Four operating situations

were emulated using the system described:

1) Normal (without faults): It is a no fault situation (without the

presence of operating situations 2, 3, 4, described below), i.e.,

the disk load and shaft are perfectly balanced and aligned, and

no defective roller bearing is used in the system.

2) Mass unbalance: This situation occurs due to an asymmetric

mass distribution around the rotational axis. This fault is

implemented by using the disk load varying the weights of

the load attached and the rotating frequency.

3) Shaft parallel misalignment: The misalignment scenario con-

sists in dislocating the motor shaft in parallel directions to the

load shaft, i.e., shifting the motor into the radial or tangential

directions.

4) Fault in roller bearings: Most of the bearing faults are originated

from its main components: outer race, cage, rolling elements



(balls) and inner race.

The acquisition system has 2 bearings (the inner and outer

bearings), being only one defective at a time, i.e., if the inner

is faulty the outer is normal (has no fault), and vice versa, as

can be observed in Fig. 1. This kind of fault is not apparent by

itself, it requires a certain mass unbalance to make it evident

in spectral analysis. This configuration was implemented by

applying 3 different types of bearing faults related to cage, outer

race and ball defects, in both bearing positions individually, and

also varying unbalance mass and rotation speed.

The vibration signals were obtained from 2 sets of accelerometers

each one associated to one bearing and measuring in 3 directions

(axes x, y and z). The set assembled on the inner bearing (set 1)

support generates the signals labelled as sx1
(n), sy1(n) and sz1(n),

respectively to each axis. Consequently, the signals related to the

outer bearing (set 2) are named sx2
(n), sy2(n) and sz2(n), following

the same rationale. A trigger signal, st(n), acquired a part from the

vibration signals allows the rotating speed estimation compounding

a 7-channel data signal with the vibration data from the 2 sets of

accelerometers plus the trigger information. All the signals were

recorded using sampling frequency of 50 kHz for 5.0 s, making a

total of 250000 samples for one channel signal.

III. DATABASE

The database is expected to emulate all operational scenarios under

study. In our case, all possible-rotating machine faults and system

condition variations containing enough information to characterize

and discriminate the faults. In this work the developed database

covered the following operating conditions:

• Normal: In this class, no fault is implemented and 49 different

rotation speeds are applied within the interval 10 < Fr < 60
Hz, where Fr is the rotation frequency of the machine.

• Unbalance: Several scenarios with unbalancing weights

of [6, 10, 15, 20, 25, 30, 35] g are considered, each with

[49, 48, 48, 49, 47, 47, 45] different rotation speeds, respectively,

in the range of 10 < Fr < 60 Hz, making a total of 333 mass

unbalance scenarios are addressed.

• Misalignment: This condition involves both scenarios,

the horizontal and vertical shaft misalignments. The

vertical misalignment signals includes displacements

of [0.51, 0.63, 1.40, 1.90, 1.27, 1.78] mm, each with

[51, 50, 50, 50, 50, 50] different rotation speeds, respectively,

totalling 301 scenarios of vertical misalignment. The

horizontal misalignment signals include displacements

of [0.50, 1.00, 1.50, 2.00] mm, each with [50, 49, 49, 49]
different rotation speeds, respectively, totaling 197 horizontal

misalignment scenarios, making a total of 498 misalignment

scenarios addressed with rotation frequencies in the range of

10 < Fr < 60 Hz.

• Bearing fault: The scenarios consider the faulty bearing in

2 different positions, inner or outer bearing, where both are

subjected to bearings with the following faults: cage, outer

race and ball. The signals obtained with faulty bearing at the

inner bearing position include [cage, outer race, ball] faults

with unbalancing weights of [0, 6, 20, 35] g for all faults. The

amounts of rotating speeds for each fault are [49, 48, 49, 42],
[49, 49, 49, 37] and [50, 49, 49, 38], respectively, totaling 558

bearing fault scenarios at the inner bearing position. The bearing

fault signals at outer bearing position include the same 3 faults,

with the same 4 unbalancing weights, and with [49, 48, 49, 41],

[49, 49, 49, 41] and [49, 43, 25, 38] rotating speeds, grouped by

fault respectively, totaling 513 bearing fault scenarios for the

outer bearing position. Combining both bearing positions (inner

and outer), a total of 1071 bearing faults scenarios are addressed.

The rotating speed is within the range of 10 < Fr < 60 Hz for

this whole operational condition.

The entire database comprises a total of 1951 different fault

scenarios for 4 different operational conditions. 49 of which from

the normal class, 333 from unbalance class, 498 from misalignment

class and 1071 from the bearing fault. This database is named 1951-

signal database.

IV. FEATURE EXTRACTION

The techniques for feature extraction consist in estimating the

rotating speed from st(n), and obtaining spectral and statistics

information from the 6 vibration signals. The adopted measures

associated to the faults in order to discriminate them are:

• Rotating frequency, (Fr), estimation: The technique to estimate

the rotating frequency is described in [5], and it consists in

calculating the NDFT-point DFT of st(n), St(k), where k is

the frequency bin associated to a frequency fi =
kiFs

NDFT

Hz and

Fs is the data acquisition sampling frequency. The frequencies of

the 4 highest magnitude peaks are obtained and their associated

lowest frequency is chosen as the estimated rotating speed, Fr .

• Entropy: It is a measure of randomness or unpredictability of a

random variable [8]. The entropy H of a discrete signal x(n)
is given by (1).

H =

C
∑

i=1

pi(x) log

(

1

pi(x)

)

, (1)

where pi(x) is the signal Power Density Function (PDF), which

is obtained through a kernel density estimator by applying

Parzen-Rosenblatt window method [9] to the input signal x(n),
and C is the number of points associated to the PDF. The

entropy is calculated for the 6 vibration signals associated to

the accelerometers sets, sx1
(n), sy1(n), sz1(n), sx2

(n), sy2(n)
and sz1(n), generating Hx1

, Hy1 , Hz1 , Hx2
, Hy2 and Hz1 ,

respectively.

• Kurtosis: It is a dimensionless statistical measure defined by the

normalized fourth statistical moment of a signal, as shown in

(2). It indicates the shape deformation of a PDF in relation to a

Gaussian PDF.

K =
E[x(n)− µ]4

σ4
, (2)

where, E[·] is the expected value, µ is the mean and σ is the

standard deviation of x(n). The kurtosis calculation is applied

to the 2 sets of accelerometers for 3 directions, making a total

of 6 measures, Kx1
, Ky1 , Kz1 , Kx2

, Ky2 and Kz2 for the axes

(x1, y1, z1) and (x2, y2, z2) related to accelerometer sets 1 and

2.

• Spectral analysis: A NDFT-point DFT of each signal acquired

from the accelerometers, sxi
(n), syi(n) and szi(n) for the sets

of accelerometers i = 1, 2 is calculated, generating their spectral

representation Sxi
(k), Syi(k) and Szi(k) for i = 1, 2, where n

represents discrete-time index and k represents frequency bin.



A. Feature vector

Compared to the technique presented in [5], the proposed one

differs by applying one more set of accelerometers, extracting twice

more vibration signals and calculating 2 additional measures, namely

kurtosis and entropy, which are expected to be helpful in discrimi-

nating bearing faults.

In order to generate the feature vector, the first step is to estimate

the motor rotating frequency, Fr and its first 2 harmonics, i.e., 2Fr

and 3Fr , then to calculate their related frequency bins kj =
fjNDFT

Fs

for j = 1, . . . , 3, where {f1, f2, f3} = {Fr, 2Fr, 3Fr}. The second

step is to obtain the magnitude from the vibration signals frequency

response in Fr and its harmonics, i.e., Sxi
(kj), Syi(kj) and Szi(kj)

for i = 1, 2 and j = 1, 2, 3, making a total of 12 measures. The third

step is to calculate the statistic measures, kurtosis and entropy, from

the discrete-time vibration signals, i.e., the 6 kurtosis Kxi
, Kyi and

Kzi for i = 1, 2 and also the 6 entropy amounts Hxi
, Hyi and Hzi

for i = 1, 2. The final step is to combine the measures in a feature

vector, Vf , using the 3 magnitude harmonics, kurtosis and entropy

from the 3 axes of the 2 accelerometers plus rotating frequency, which

can be represented by:

Vf = {Fr, Sxi
(kj), Syi(kj), Szi(kj),

Kxi
,Kyi ,Kzi , Hxi

, Hyi , Hzi}, (3)

for i = 1, 2 and j = 1, 2, 3, achieving a 31 dimensionality

vector, while the feature vector published in [5] reached dimension

10, because it only uses the accelerometer set 1 and no statistical

measures, being represented by

V
1

10 = {Fr, Sx1
(kj), Sy1(kj), Sz1(kj)}, (4)

for j = 1, . . . , 3. Just for comparison purposes 2 other feature vector

are defined: V 1

16 and V
1,2
19

.

V
1

16 = {Fr, Sx1
(kj), Sy1(kj), Sz1(kj),

Kx1
,Ky1 ,Kz1 , Hx1

, Hy1 , Hz1}, (5)

for j = 1, 2, 3, making a dimensionality 16 vector for the accelerom-

eter set 1. It can be regarded as V 1

10 adding kurtosis and entropy.

V
1,2
19

= {Fr, Sxi
(kj), Syi(kj), Szi(kj)}, (6)

for i = 1, 2 and j = 1, 2, 3, making a 19-dimension vector for the

accelerometer sets 1 and 2. It is equivalent to implement Vf without

kurtosis and entropy measures.

V. EXPERIMENTAL RESULTS

The fault classification experiment consists in adopting similar

procedure presented in [5] to evaluate the system ability of fault

discrimination by adding the kurtosis and entropy measures, not only

for normal, unbalance and misalignment classes, but also for bearings

faults. These tasks used as classifier Multi-Layer Perceptron ANN

with input layer with the same size of input feature vector, one hidden

layer with the amount of neurons approximately equals to the input

layer size (obtained empirically), and the output layer with number

of neurons equals to the number of classes to be discriminated.

A great difference in the number of elements of the classes can

affect drastically the ANN classifier performance. In order to prevent

it, the low number of elements of ‘normal’ class of the 1951-signal

database, will be artificially increased, making the 49 elements of

‘normal’ class to be expanded in seven new signals by just adding

7 different realizations of a 10 dB-SNR Gaussian white noise in

the original signals totalling 343 elements for the ‘normal’ class.

The expanded database is composed of 343 signals from ‘normal’

class, 333 from the ‘unbalance’ class, 498 from ‘misalignment’ class

and 1071 from ‘bearing’ fault, being named as 1951-signal-increased

database.

The original 1951-signal database was divided into 3 disjoint

sets with approximately 70%, 10%, and 20% of the signals for

training, validation and test, respectively. Each of the sets is chosen

to represent the data with maximum variability from rotating fre-

quency and fault intensity. The ANN learning (training) process was

performed by applying the Levenberg-Marquardt backpropagation

algorithm and the validation set, which is employed to avoid ANN to

become excessively specialized on the training signals thus loosing

its generalization capability [5]. The database expansion is applied

after the sets separation, in order to prevent the expanded signals

originated from the same original one populating different database

sets.

All tables related to the fault classification experiment present the

classification performance X/Y, also called confusion matrix, for the

test data from the 1951-signal-increased database, where X represents

the recognized signals and Y is the total number of signals for the

target class under analysis.

A. Influence of kurtosis and entropy

It is known that kurtosis and entropy are measures traditionally

applied in bearing fault diagnosis. However their usage in discriminat-

ing ‘normal’, ‘unbalance’ and ‘misalignment’ classes has presented

a quite improvement in recognition performance.

Tables I and II only differ by the use of kurtosis and entropy.

Table I implements the framework described in [5], i.e., performs

a classification task using V 1

10 with an ANN of 10-10-3 neurons in

the input, hidden and output layers, respectively. Table II applies

V 1

16, which is V 1

10 adding kurtosis and entropy, for the classification

task with an ANN of 16-16-3 neurons. Although V 1

16 is not the

proposed feature vector, it is the fair one to be compared to V 1

10.

Comparing tables I and II, it is clearly noticed that the use of

kurtosis and entropy improves each individual class performance and

consequently the overall system accuracy from 81.2% to 94.8%,

reaching a relative increase of about 14% in performance. The

total classification indicated in Table II did not change significantly

using the accelerometers set 2. However, the set 1 was chosen for

comparison reason, being equivalent scenario adopted in [5].

TABLE I
CONFUSION MATRIX USING FEATURE VECTOR V

1

10
DESCRIBED IN [5].

Class
Target

Normal Unbalance Misalignment

Normal 48/63 2/60 6/90
Unbalance 0/63 44/60 3/90
Misalignment 15/63 14/60 81/90
Total (%) 81.2

A similar rationale is considered in Tables III and IV, since they

also differ by the use of kurtosis and entropy. Table III performs

the classification task with an ANN of 19-19-3 neurons and feature

vector V
1,2
19

, which is equivalent to V 1

10 for both, inner and outer,

accelerometer sets. Table IV implements the classification task using

the proposed feature vector, Vf , which is V
1,2
19

adding the kurtosis

and entropy measures, and an ANN of 31-35-3 neurons. Observing

the performances of tables III and IV, once again the individual

classes and the system accuracies presented significant improvements.



TABLE II
CONFUSION MATRIX USING FEATURE VECTOR V

1

16
, WHICH IS V

1

10
ADDING

KURTOSIS AND ENTROPY.

Class
Target

Normal Unbalance Misalignment

Normal 56/63 0/60 2/90
Unbalance 0/63 58/60 0/90
Misalignment 7/63 2/60 88/90

Total (%) 94.8

The relative total increase is approximately 9%, which represents the

improvement in accuracy from 90.1% to 99.1%.

TABLE III
CONFUSION MATRIX USING FEATURE VECTOR V

1,2
19

.

Class
Target

Normal Unbalance Misalignment

Normal 52/63 0/60 5/90
Unbalance 0/63 55/60 0/90
Misalignment 11/63 5/60 85/90

Total (%) 90.1

TABLE IV
CONFUSION MATRIX USING FEATURE VECTOR Vf , WHICH IS V

1,2
19

ADDING KURTOSIS AND ENTROPY, MAKING A 31-DIMENSION VECTOR.

Class
Target

Normal Unbalance Misalignment

Normal 63/63 0/60 0/90
Unbalance 0/63 58/60 0/90
Misalignment 0/63 2/60 90/90

Total (%) 99.1

The influence of the 2 sets of accelerometers, one set for each roller

bearing, can be observed by comparing table I against III, and table II

against IV, since their only difference is the usage of vibration signals

of 2 sets of accelerometers, instead of only one. Similar behaviour

shown in previous comparisons is also observed, indicating that the 2

sets of accelerometers also affect positively the system performance.

The improvement was from 81.2% to 90.1%, considering tables I

and III; and for tables II and IV, it was from 94.8% to 99.1%, making

relative performances increase of around 10% and 4%, respectively.

B. Addition of bearings faults to the classification task

The idea is to apply the proposed feature vector, Vf , which reached

an excellent performance in the 3-class task discrimination, in a

6-class recognition system. This more complex classification task

consists in discriminating among ‘normal’ (C1), ‘unbalance’ (C2),

‘horizontal misalignment’ (C3), ‘vertical misalignment’ (C4), ‘outer

bearing’ (C5) and ‘inner bearing’ (C6) faults. The ANN designed for

this task has 31 neurons in the input, 35 in the hidden and 6 in the

output layers.

The results shown in table V indicate an overall classification

performance of 95.8%, suitable for the problem of mechanical

faults classification, making the method proposed effective for the

recognition of failure patterns under analysis in this work.

VI. CONCLUSION

This paper proposed a modification in feature extraction technique

compared to the one adopted in [5], differing mainly by the usage

of 2 sets of accelerometers, one for each roller bearings, and adding

TABLE V
CONFUSION MATRIX USING FEATURE VECTOR Vf FOR DISCRIMINATING

NORMAL, UNBALANCE, HORIZONTAL AND VERTICAL MISALIGNMENT,
AND OUTER AND INNER BEARING FAULTS.

Class
Target

C1 C2 C3 C4 C5 C6

Normal (C1) 63/63 0/60 0/36 0/54 0/93 0/101
Unbalance (C2) 0/63 60/60 1/36 0/54 0/93 1/101
Horiz. Misal. (C3) 0/63 0/60 30/36 1/54 0/93 1/101
Vert. Misal. (C4) 0/63 0/60 1/36 53/54 0/93 0/101
Outer Bear. (C5) 0/63 0/60 2/36 0/54 89/93 4/101
Inner Bear. (C6) 0/63 0/60 2/36 0/54 4/93 95/101

Total (%) 95.8

2 new measures, kurtosis and entropy. To evaluate this approach, a

new database with 1951 fault scenarios was developed. The proposed

feature vector applied to the 3-class recognition problem (normal,

unbalance and misalignment classes) described in [5] have reached

the maximum system performance of 99.1% and maximum relative

improvements of 14% and 10% for the applicability of the measures,

kurtosis and entropy, and the 2 sets of accelerometers, respectively.

Even in a more complex discrimination task, a 6-class problem,

where the misalignment is divided into horizontal and vertical, and

the inner and outer bearing-fault categories are added, the proposed

feature vector applied to the classification system achieved 95.8%

of overall accuracy. The addition of kurtosis and entropy with one

more set of accelerometers have shown to be essential to improve the

fault classification accuracy of mechanical systems, even if no roller

bearing fault is addressed.

The investigation of kurtosis and entropy individual contributions,

the adoption of other statistical analysis, and techniques to deal with

imbalanced database problem, as RusBoost and SMOTEBoost, will

be considered for future work.
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