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Abstract—This paper addresses the problem of anomaly de-
tection on rotating machinery in industrial environments using
single channel audio signals. The proposed algorithm is based
on image processing feature analysis obtained from the image
representation of the Short-time Fourier Transform of reference
and degraded audio signals. In order to assess the potential of
the algorithm, a 8 signals database is recorded. The proposed
algorithm is able to separate signals of machinery normal
behavior from signals of machinery anomalous behavior with
100% hit rate using the recorded database.

Keywords—Image processing, audio anomaly detection, feature
extraction.

I. INTRODUCTION

Machinery condition based monitoring (CBM) [1], [2], fault

and failure classification (FC) [3], [4], and remaining useful

life(RUL) [6] are challenges that are gaining much interest

by both academic and industrial communities. Table I [5]

shows the expected improvements of using automatic or semi-

automatic systems for condition monitoring, where one can

observe a significant improvement on maintenance costs and

total productivity, which are of great interest for the industry.

In order to develop techniques for CBM, FC and RUL,

one must first determine whether an anomaly has occurred,

then separate faults from failures and isolate the problems to

be studied and/or modelled. One of the most sophisticated

and reliable human sensors are the ears and it is known

how machine operators have the capability of identifying a

problematic machine just be hearing how it sounds.

The work described in this paper is part of the DORIS

project, described in details in [7], [8].

This paper proposes a three stage algorithm for automatic

audio anomaly detection using two simple features extracted

from the image representation of Short-time Fourier Transform

of audio signals. In order to show the potential of the proposed

approach, an 8 audio signals database was recorded using a

moving robot on a rail inside a closed environment.

The paper is organized as follows: In Section II the recorded

database is described; Section III describes the three stages of

the proposed algorithm; Section IV shows the experimental

results of the proposed algorithm applied to the recorded

database; and finally Section V is devoted to the conclusions.

TABLE I
EXPECTED IMPROVEMENTS OF USING SYSTEMS FOR CBM. [5]

Evaluation metric Improvement

Maintenance costs Reduction of 50%–80%
Equipment damages Reduction of 50%–60%
Extra hours expenses Reduction of 20%–50%
Machine life expectancy Increase of 50%–60%
Total productivity Increase of 20%–30%

II. DATABASE

In order to develop an algorithm that is able to discriminate

audio signals with different time-frequency signatures, an

audio database was recorded. This database was recorded

using a robot moving on a fixed track in an enclosed room, as

illustrated at Fig. 1. Attached to the robot is one microphone

with 16 kHz sampling frequency and 24 bits/sample analog-to-

digital converter. Every recorded audio is corrupted by ambient

noise and moving robot sound.

Fig. 1. Schematic design of the robot track inside an enclosed environment.

One loudspeaker was placed in a fixed position along the

track to simulate 4 different rotating machinery configurations:

I) Loudspeaker plays no sound.

II) Loudspeaker plays the sound of machine 1.

III) Loudspeaker plays the sound of machine 2.



IV) Loudspeaker plays the sound of both machines at the

same time.

Two different runs along the track were recorded for each

configuration, leading to 8 different audio signals. Every run

used approximately the same start and end points and the same

linear speed for the moving robot.

III. PROPOSED ALGORITHM

The proposed algorithm is composed by three stages, as

shown by Fig. 2.
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Fig. 2. Block diagram of the proposed algorithm.

A. STFT stage

At the first stage of the proposed algorithm, a Short-

time Fourier Transform (STFT) is applied individually to the

reference x[n] and degraded y[n] signals, leading to X[k,m]
and Y [k,m]. The STFT is calculated with time frame of size

L = 16000 samples, with Lov = 14400 overlapping samples

between consecutive frames. A Hanning window is used with

DFT (discrete Fourier Transform) of size L.

As the anomalies to be detected are related to changes on

the operating mode of the machinery, only frequency bins

equivalent to up to 200 Hz are observed. Fig. 3 shows the

image representation of X[k,m] for configurations I and II

and Fig. 4 shows the image representation of X[k,m] for

configurations III and IV. These 4 images are pixel matrices

of dimensions M ×N with pixel in the range [0, 255], where

255 represents the maximum value of X[k,m]. The horizontal

axis represents frequency bins k in ascending order from left

to right and the vertical axis represents time frames m in

ascending order from top to bottom.

It can be noticed that Fig. 3 (a) contains only the noise floor

that is also present on Fig. 3 (b) and Fig. 4. In order to remove

this noise floor, all values of X[k,m] and Y [k,m] that are

below the threshold Tq = 40 dB are set to zero leading to the

new image Xq . Fig. 5 shows the images Xq of configurations

I and II and Fig. 5 shows the images Xq of configurations III

and IV.

One can observe that the noise floor is removed from all

images, emphasizing peaks on frequency bins around 90 Hz.

B. FEXT stage

At the second stage, two features are extracted from both

reference and degraded images Xq and Yq: maximum nor-

malized 2D cross correlation with vertical lags R(Xq, Yq) and

Kullback-Liebler Divergence DKL(Yq||Xq).
The normalized 2D cross correlation is a measure of sim-

ilarity between two images and is largely used by image
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Fig. 3. Image representation of X[k,m] for one signal of: (a) configuration
I (b) configuration II.
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Fig. 4. Image representation of X[k,m] for one signal of: (a) configuration
III (b) configuration IV.

processing pattern recognition algorithms [9], [10], [11]. The

maximum normalized 2D cross correlation with vertical lags

is defined as:

R(Xq, Yq) =

max

[
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m=0
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∑

n=0
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Fig. 5. Image representation of Xq [k,m] for one signal of: (a) configuration
I (b) configuration II.
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Fig. 6. Image representation of Xq [k,m] for one signal of: (a) configuration
III (b) configuration IV.

where 0 ≤ j < N . As the maximal value of the cross

correlation is obtained only for vertical lags (time dimension),

this feature is robust to little time shifts between reference and

to be tested runs.

The Kullback-Liebler Divergence is a measure of difference

between statistical distributions and it is used by some image

processing pattern recognition algorithms [12], [13]. It is

defined as:

DKL(Yq||Xq) =
∑

i∈I

py(i) log

(

py(i)

px(i)

)

, (2)

where I is defined such as px(i) = 0 leads to py(i) = 0.

px(i) and py(i) are obtained by the histogram with 256 bins

of each image. Little time shifts between reference and to be

tested runs has little impact on this feature.

As both features are extracted from images representing the

STFT of signals recorded from a microphone that is attached to

a moving robot, it is important to ensure synchronism between

reference and to be tested runs, which was guaranteed by the

database recording setup.

C. CLASS stage

The third and final stage is responsible for the anomaly

detection. Fig. 7 (a) and Fig. 7 (b) show the graphical repre-

sentation of the features. The database described in Section II

was divided in training and test sets.

The training set is composed by signals from configuration

I, III and IV as reference and to be tested signals. The test

set is composed of signals from configuration II as reference

signals and configuration I, III and IV as to be tested signals.

Fig. 7 (a) represents signals of configuration I as reference

signals and signals of configuration III and IV as degraded

signals. Fig. 7 (b) represents two signal of configuration IV

as reference signals and signals of configuration I and III as

degraded signals. It can be noted that when configuration I is

either Xq or Yq , R(Xq, Yq) = 0 and DKL = 0 only when Xq

and Yq are both from configuration I. When configuration I is

neither Xq or Yq , R(Xq, Yq) 6= 0 and this feature alone can

separate normal signals from anomalous signals.

These observations lead to the following classification al-

gorithm:

1) If R(Xq, Yq) = 0 and DKL(Yq||Xq) = 0, the degraded

signal is considered from the class NORMAL.

2) If 0 < R(Xq, Yq) < 0.75, the degraded signal is

considered from the class ANOMALOUS.

3) If R(Xq, Yq) ≥ 0.75, the degraded signal is considered

from the class NORMAL.

The thresholds were obtained in order to minimize intersec-

tion between NORMAL and ANOMALOUS classes.

IV. EXPERIMENTAL RESULTS

Two experiments were conducted, one for training and one

for testing the algorithm. In the first experiment, the training

set was used to obtain the algorithm parameters of STFT,

FEXT and CLASS stages. In the second experiment, the test

set was used to evaluate the algorithm performance.

Table II and Fig. 8 show the performance of the algorithm

using the test set. It can be observed that the algorithm has a

100% hit rate.
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Fig. 7. Graphical representation of features R(Xq , Yq) and DKL(Yq ||Xq):
a) configuration I as reference b) configuration IV as reference. (×) repre-
sents signals from the NORMAL class and (◦) represents signals from the
ANOMALOUS class.

TABLE II
ALGORITHM PERFORMANCE FOR CONFIGURATION II.

Classification
Original Normal Anomalous

Normal 2 0
Anomalous 0 12

V. CONCLUSION

This paper proposes a three stage algorithm for automatic

audio anomaly detection of rotating machines using image

processing features extracted from the image representation

of Short-time Fourier Transform of audio signals.

It is shown that the proposed algorithm has the potential to

automatically detect audio anomaly, as the performance with

the 8 signals recorded database has a 100% hit rate, using

simple image processing features.
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Fig. 8. Graphical representation of features R(Xq , Yq) and DKL(Yq ||Xq)
for configuration II as reference. (×) represents signals from the NORMAL
class and (◦) represents signals from the ANOMALOUS class.
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