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Rotating machinery fault diagnosis using
similarity-based models

Felipe M. L. Ribeiro, Matheus A. Marins, Sergio L. Netto, and Eduardo A. B. da Silva

Abstract— This work proposes an automatic fault classifier
that uses similarity-based modeling (SBM) to identify faults on
rotating machines. The similarity model can be used either as
an auxiliary model to generate features for a classifier or as a
standalone classifier. A new approach for training the model using
a prototype-selection method is investigated. Experimental results
are shown for the MaFaulDa database and for the Case Western
Reserve University (CWRU) bearing database. Results indicate
that the proposed modifications improve the generalization power
of the similarity model and of the associated classifier, achieving
accuracies of 96.4% on the MaFaulDa and 98.7% on the CWRU
databases.
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extraction, Similarity-based modeling, Machine learning.

I. INTRODUCTION

One application of machine learning employed in the in-
dustry is the condition-based maintenance of an equipment
where one attempts to classify and predict failures. Rotating
machines are an important piece of equipment used in a variety
of applications, including airplanes, power turbines, oil and
gas industry, and so on [1], [2]. Due to their complexity,
these machines require a meticulous maintenance procedure
to ensure reliability, avoiding production stops and incurring
costs.

There are many approaches for detecting faults in rotating
machines. Most extract features from vibration signals to
assess the equipment current condition. Different features are
needed to obtain useful information relevant to detect faults
from the original sources over multiple conditions. These
features can be classified considering their domain (time,
spatial, time-spectral, or spectral) or its computation method
(transform coefficients or aggregated statistics) [3], [4], [5]. As
on example, the authors of [6] extract statistical and spectral
features to detect failures in a machinery fault simulator (MFS)
using multilayer perceptrons. In [7], the authors present a
comparison of multiples classifiers under the bearing fault
diagnostic task. Support vector machines (SVM) are employed
to the same task in [8] and [9]. Lastly, a feature selection
methods is evaluated with different classifiers in [4].

This work presents an automatic system for fault classi-
fication that uses similarity-based modeling (SBM) [10] as
an auxiliary model to produce new features for a random
forest classifier. Given a test sample, the SBM models return
a similarity score between the sample and a set of samples,
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or prototypes [11], representing the target condition. The
selection of an optimal set of prototypes is a key aspect of
the SBM methodology. As such, this work compares two
prototype selections methods, an adaptation of the original
SBM [12] method for multiclass problems and the method
proposed in [13] for knn, applied on the SBM framework.

Two databases were employed to assess the models. One is
the Machinery Fault Database (MaFaulDa) [14], comprising
1951 scenarios from a machinery fault simulator working
under multiple conditions. Each scenario is monitored by
six accelerometers, a tachometer and a microphone [6], [15].
The other database is the Case Western Reserve Univer-
sity (CWRU) bearing database [16], considered a standard
reference in bearing diagnostics. This database was chosen
considering that it permits comparisons to previous works [4],
[7], [8], [9]. Results indicate that the proposed methodology is
capable of correctly diagnosing the machine operating state,
achieving an accuracy of 96.4% on the MaFaulDa database
and 98.7% on the CWRU database.

This paper is organized as follows: Section II presents the
SBM methodology [12], [17], [18], [19], [20], [21], including
its original training phase and the new proposed approach
for selecting the representative set. Section III describes the
experimental methodology employed in this work to evaluate
the proposed system, including details about the employed
databases and the preprocessing and validation procedures.
The experimental results obtained with the proposed method-
ology, including comparisons with other works, are discussed
in Section IV. Finally, Section V provides the obtained con-
clusions and discusses possible future works.

II. SIMILARITY-BASED MODELING (SBM)

Similarity-based modeling (SBM) is a nonparametric mod-
eling technique first proposed in [10] to supervise and detect
equipment faults on a variety of industrial applications, includ-
ing: fault diagnosis in a machinery fault simulator (MFS) [20],
[18], anomaly detection in power plants [19], and modeling
airplanes flight paths [17].

Given a sample at instant n, comprising M measures
or features from multiples sources, represented as xn =
[xn(1), xn(2), . . . , xn(m)]

T, the SBM model returns the sim-
ilarity between the evaluated sample and a set of samples
P [21]. These samples, or prototypes, are a set of historical
samples representing the target system condition. Given the
prototype set Pc containing L samples representing the normal
condition, we can arrange the prototypes in a into an L×M
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“memory” matrix [10],

D =
[
x1 x2 . . . xL

]T
. (1)

The SBM model then attempts to represent the evaluated
sample xn producing an estimate x̂n as a linear combination
of the prototype samples in D, that is

x̂n = DT wn

‖wn‖1
. (2)

The evaluation is made by computing the similarity score sn
between xn and x̂n as

sn = xn ◦ x̂n = sF (xn, x̂n) , (3)

where sF is a similarity function and ◦ represents a similarity
operation. The similarity function returns a scalar in the
interval [0, 1], with sn = 1 when the two vectors are identical,
and sn ≈ 0 when they are very dissimilar. An example of
similarity function is the one originally used in the SBM
framework [20]

s(xi,xj) =
1

1 + ‖xi − xj‖2
. (4)

The weight vector presented in Equation (2) is defined as

wn = G−1an, (5)

where
G = D ◦DT, (6)

and
an = D ◦ xn, (7)

where ◦ is the similarity function (Eq. (4)) that replaces the
row-column inner products in the matrix multiplications.

Vector an evaluates the similarity between the current
sample and each sample on matrix D, whereas matrix G
transforms the similarity vector an in a set of weights for
each prototype. When G = I, the model is called called
auto-associative kernel regression (AAKR) [22], a particular
case of SBM equivalent to assuming no similarity between the
samples within D.

A. Multiclass SBM

The SBM was originally devised to detect abnormal oper-
ation conditions, which were associated with low similarity
scores. To cope with multiple known conditions, we extended
the original SBM framework to a multiclass formulation by
defining matrices Dc for each operational class c. In this
formulation a new input sample xn is evaluated against each
modeled condition as

x̂n,c = Dc
wn,c

‖wn,c‖1
(8)

with

wn =
[
Dc ◦DT

c

]−1
Dc ◦ xn = G−1c an,c. (9)

The input sample is then associated to the class c∗ which
produces the highest similarity score, that is

c∗ = arg max
c

{
sn,c

}
= arg max

c
{xn ◦ xn,c} . (10)

B. Original SBM Training Phase

The training phase of an SBM model consists of selecting
the prototype set for a target condition c. This procedure is crit-
ical to achieve the best performance, as using all the training
samples would incur in a noisy and redundant representation,
a high computational cost, and possible overfitting. In contrast,
choosing an inadequate set Pc can lead to a poor representation
and performance impairments, including underfitting.

The original SBM training proposition consists of an algo-
rithm that attempts to select the minimal number of vectors
that yields the same performance level as the complete set [12].
It consists of two steps:

1) First, it chooses as representatives the samples with
index in the set I = {i1, i2, . . . , ik}, such that

i ∈ I if ∃j : xij = max
n
{xnj} ∨ xij = min

n
{xnj};

2) The other samples are ordered by their `2 norm in
decreasing order and decimated by a factor of t. The
remaining samples complement the prototype set Pc.

In this manner, matrix Dc consists of samples containing
the extrema of each feature (first step), and samples that have a
certain difference on their `2 norm (second step). However, this
last step can produce sub-optimal results, as two completely
different vectors can have the same `2 norm [23]. Another
critical choice of this algorithm is the decimation factor t: the
number of representative samples can be expressed as l = k+
b(n− k)/tc, which can produce a set larger than the optimal.
To solve these issues, next section proposes a new approach,
which transforms the prototype selection problem into a set
cover problem.

C. Interpretable Prototype Selection Method

This method is based on of the prototype selection methods
for interpretable classification presented in [13]. As previously
described, selecting samples for Dc is equivalent to select a set
of prototypes Pc. Consider balls with radius τ centered in each
point xi from the training set X . The best set of prototypes
Pc ⊆ X is a set of balls having the following properties [13]:

• Property 1: It should cover as many points from class c
as possible;

• Property 2: It should cover as few points as possible from
other classes;

• Property 3: It is sparse, using as few prototype as possible
for a given τ ;

This problem can be translated as a set covering problem.
Given the set of points X , the set covering problems seek the
smallest subcover of X from the collection of sets that forms
a cover of X . If we take B (x) = {x′ ∈ Rm : d (x′,x) < τ},
which denotes the ball with radius τ > 0 centered in x with
distance d from x′. The goal is to find the smallest subset
P ⊆ X , P =

⋃
Pc, ∀c, such that {B (xi) : xi ∈ P} covers

X .
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We can indicate when an instance belongs to the prototype
set P by introducing variables αj such that

αj =

{
1, if xj ∈ P;

0, otherwise.
(11)

This problem can be described as [13]

min
n∑
j=1

αj s.t
∑

j:xi∈B(xj)

αj ≥ 1 ∀xi ∈ X , (12)

where αj ∈ {0, 1}, ∀xj ∈ X .
While Equation (12) represents Property 1, it does not

address the remaining properties. Property 2 states that in
certain cases some points from class c should be left uncovered
as they would add points with labels y 6= c. Following [13],
we adopt a prize-collection set cover framework, assigning a
cost to each covering set, and penalties for each uncovered or
incorrectly covered point. Then one finds the minimum-cost
partial cover [24]. This can be described as

min
α

(c)
j ,ξi,ηi

∑
i

ξi +
∑
i

ηi + λ
∑
j,c

α
(c)
j

s.t.



∑
j:xi∈B(xj)

α
(yi)
j ≥ 1− ξi, ∀xi ∈ X ,∑

j:xi∈B(xj)
c6=yi

α
(c)
j ≤ ηi, ∀xi ∈ X ,

α
(c)
j ∈ {0, 1} ∀j, i ξi, ηi ≥ 0 ∀i, (13)

where α
(c)
j ∈ {0, 1} indicates if xj belongs to Pc; ξi is a

slack variable for the Property 1: if a training point from class
c is not covered, ξi = 1; likewise, ηi counts the number of
instances with c 6= yi that are within τ of xi; finally, λ ≥ 0
is a parameter specifying the cost of adding a prototype [13].

In [13] two approaches for approximately solving this
problem are discussed: one is based on linear programming
relaxation with randomized rounding, and the other is a greedy
approach. Here we present the latter, which is used in our
prototype selection method.

Equation (13) minimizes the sum of the number of uncov-
ered points, the number of incorrectly covered points, and the
number of prototypes. We can then define a greedy algorithm
which finds, at each step, the point xj ∈ X and class c for
which the addition of xj to Pc produces the maximum cost
reduction. The incremental gain can be denoted by

∆L (xj , c) = ∆ξ (xj , c)−∆η (xj , c)− λ (14)

where

∆ξ (xj , c) =

∣∣∣∣∣∣Xc
⋂B (xj) \

⋃
x′j∈Pc

B
(
x′j
)∣∣∣∣∣∣ ,

∆η (xj , c) =
∣∣∣B (xj)

⋂
(X \ Xc)

∣∣∣ .
(15)

This procedure is described in Algorithm 1

Algorithm 1 Interpretable prototype selection algorithm [13]

function PROTOTYPE SELECTION(X , P ′, τ ),
if P ′ = ∅ then
P ′ = X

end if
Start with Pc = ∅ for each class c;
while ∆L (x∗, c∗) > 0 do

Find (x∗, c∗) = arg max(xj ,c) ∆L (xj , c) , xj ∈ P ′
Let Pc∗ ← Pc∗ ∪ {x∗}

end while
end function

III. EXPERIMENTAL METHODOLOGY

This section describes the experimental methodology used
to evaluate the system performance and the proposed modifi-
cations. The proposed system, illustrated in Fig. 1, comprises
three blocks: the preprocessing block converts the input to
a new feature space; the SBM model returns the similarity
between the test sample and each class; and a classifier that
realizes the diagnosis. In this work a random forest classifier
(RF) was employed for the last task.

Random Forest
classifier

SBM modelsPreprocessingx̃n

xn (rn, sn, ŷn)

yn

Fig. 1: Block diagram of the proposed system.

A. Database

Two databases were employed during this work to evaluate
the performance of the SBM models: the MaFaulDa [14] and
the CWRU bearing database [16].

1) MaFaulDa stands for Machinery Fault Database. It
consists of 1951 scenarios acquired by eight sensors
attached on a machinery fault simulator: six accelerom-
eters, a tachometer, and a microphone. It covers the
equipment normal operation and 5 faulty states: im-
balanced operation, horizontal misalignment, vertical
misalignment, and underhang or overhang bearing faults.
This database is available for download at [14].

2) The Case Western Reserve University (CWRU) bear-
ing database [16] consists of 161 scenarios divided
in four categories, as described in [25]. Each scenario
is assessed by three accelerometers: one on drive-end
bearing, one on the fan-end bearing housing, and the last
on the motor supporting base plate. This database is pub-
licly available, and is widely used in the literature [4],
[7], [8], [9], enabling comparisons with previous works.

B. Features

Before each sample was evaluated by the proposed system
it was processed. This procedure transforms each original
multivariate time-series scenario into a set of features that tries
to capture the relevant information for the classification model
in a compact form. This representation is also necessary to
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reduce the computational costs of the algorithm, reducing the
original dimension of each sample.

Given the different natures of each database, they have
undergone distinct preprocessing procedures, namely:

1) MaFaulDa: 5 Three types of features were extracted:
the rotation frequency, spectral features, and statistical
features:
• The rotation frequency fr was determined from the

discrete Fourier transform of the tachometer signal,
following the procedure detailed in [15], [6];

• The spectral features correspond to magnitude of
the spectrum of the other signals at the frequencies
fr, 2fr and 3fr;

• The statistical features computed for each signal are
presented in Table I. As the signals in MaFaulDa
were normalized to unit variance to reduce the
dependence from the acquisition setup, features
which are dependent from the variance were not
considered in this case.

2) CWRU Database: In this case, statistical features pre-
sented on Table I were extracted, according to the
procedure described in [4].

TABLE I: Statistical features taken from time (xi) and spectral
domain data (Xi) from each signal [4], [6], [15].

Time domain

µx = 1
N

∑N
i xi σ2

x = 1
N

∑N
i (xi − µx)2

Hx = −
∑N
i P (xi) logP (xi) κx = 1

N

∑N
i

(
xi−µx
σx

)4
γx = 1

N

∑N
i

(
xi−µx
σx

)3
xrms =

(
1
N

∑N
i x2i

) 1
2

xsra =
(

1
N

√
|xi|
)2

xppv = maxi (xi)−mini (xi)

xcf =
maxi(|xi|)
xrms

xif =
maxi(|xi|)
1
N

∑N
i |xi|

xmf =
maxi(|xi|)

xsra
xkf =

κx
x4rms

Spectral domain

µX = 1
N

∑N
i Xi Xrms =

(
1
N

∑N
i X2

i

) 1
2

σ2
X = 1

N

∑N
i (Xi − µX)2

C. Training and Validation Methodology

This section presents the training and validation procedures
used to evaluate the diagnosis system and the proposed mod-
ifications. The MaFaulDa database was randomly separated,
respecting the classes distribution, in two disjoint training and
test sets comprising 90% and 10% of the samples, respectively.
The best set of parameters and the model performance were
evaluated using a k-fold validation on the training set with
k = 10. As performance metric to select the best model the
weighted f1-score between the classes was used. The best
model was then evaluated on MaFaulDa test set and on the
CWRU, by retraining the model using the same parameters in
a k-fold fashion, to assess the system generalization power.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Validation Results

This section presents the results obtained during the val-
idation procedure. As described in the previous section, the
best set of parameters for the employed models was selected
using a k-fold cross-validation procedure on the MaFaulDa
database. The validation considered all following options:
• Using the original SBM formulation, given in Eq. (5), or

the AAKR formulation, considering G = I in the same
equation;

• The SBM prototype selection method, as described in
Section II-B, with decimation factors t ∈ [2, 21], or the
proposed interpretable prototype selection method, with
similarity radius τ ∈ [0.05, 1].

The similarity function presented in Eq. (4) was employed
in all evaluated models. The best model obtained during
the validation procedure was applied in the test set of each
database to assess its generalization capability.

Table II presents the best model configuration in descending
order of cross-validation f1-score. One can notice that the
proposed approach achieved a small but consistent increase in
classification performance when compared to a model using
the original SBM training phase or to a stand-alone random
forest classifier.

TABLE II: Cross-validation f1-score (%) comparing the best
configuration for each model.

Model Method τ /t F1-score (%)

SBM+RFC Proposed 0.953 99.24± 0.53
AAKR+RFC Original 21 99.13± 0.65

RFC – – 99.08± 0.69

Even though the results are statistically equivalent, there
are some advantages in the proposed procedure. First, the
similarity score can be considered as measure of confidence in
the SBM decision. Also, the residual can be used to observe
how the decision was made, permitting an operator to interpret
the model decision. More information can be obtained by
observing the most similar representative state when assessing
a decision. Lastly, the proposed modification adds value to the
model, reducing its computational complexity and making the
information contained on the prototypes more relevant.

B. Test Results

Table III presents the test results on each database. The
results were generated using the best model obtained dur-
ing the validation procedure. These results indicate that the
proposed methodology is capable of generalizing for other
samples as the parameters used for the CWRU were chosen
on the MaFaulDa and the model still achieved higher accuracy
than the one obtained in the original database.

TABLE III: Test accuracy (%) on each database.

Database Accuracy
MaFaulDa 96.43%

CWRU 98.7± 0.76%
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C. Comparison with Previous Works

Several other works in the literature addressed the problem
of automatic classification of faults in rotating machines. The
work presented in [6] employed multilayer perceptrons on the
MaFaulDa database, achieving accuracy of 95.8%, inferior
to the ones obtained with the proposed system presented in
Table III.

For the CWRU database, even though there are many works
using this database [25], it is very difficult to make a direct
comparison, as most works do not present their results in a
quantitative manner, only in a qualitative manner. As such,
the comparison is restricted to a small set of works. In [7],
kNN, naive Bayes, and SVM classifiers achieved accuracies
of 98.83%, 98% and 98.97%, respectively. The SVM classifier
found in [8] obtained accuracies above 98% for different
rotation frequencies. The SVM and ELM classifiers using
the procedure described in [9] achieved accuracies of 82.4%
and 97.5%, respectively. Lastly, the kNN, SVM, and ANN
classifiers using the feature selection method proposed in [4]
obtained accuracies between 93% and 100%. From the pre-
viously presented results, one can conclude that the proposed
SBM-based fault classifier achieves, for the CWRU database,
competitive results when compared with the ones found in the
literature. It is important to point out that, as demonstrated by
the results over the MaFaulDa database, the proposed system
is able to classify, with high accuracy, a wide range of machine
faults, including misalignment and unbalanced faults.

V. CONCLUSION

In this work we presented an automatic fault classifier
which employs similarity-based modeling to identify faults on
rotating machines. The similarity model was used as a feature
generator to a random forest classifier. We extend the simi-
larity model for multiclass problems and we investigated the
usage of a prototype-selection during the training procedure
of the models. The system was evaluated in two databases:
the MaFaulDa [14], a comprehensive database with multiple
faults, and the CWRU bearing database [16], the current stan-
dard database for bearing fault diagnosis. The proposed system
achieved accuracies of 96.43% on the MaFaulDa and 98.7%
on the CWRU database, demonstrating the generalization
power of the proposed system and competitive performance
when compared with other works using the two databases.
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