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Towards an end-to-end speech recognizer for
Portuguese using deep neural networks
Igor Macedo Quintanilha, Luiz Wagner Pereira Biscainho and Sergio Lima Netto

Abstract— This paper presents an open-source character-based
end-to-end speech recognition system for Brazilian Portuguese
(PT-BR). The first step of the work was the development of a
PT-BR dataset—an ensemble of 4 previous datasets (of which
3 publicly available). The model trained on this dataset is a
bidirectional long short-term memory network using connection-
ist temporal classification for end-to-end training. Several tests
were conducted to find the best set of hyperparameters. Without a
language model, the system achieves a label error rate of 31.53%
on the test set, about 17% higher than commercial systems with
a language model. This first effort shows that an all-neural high-
performance speech recognition system for PT-BR is feasible.

Keywords— deep learning; speech recognition; recurrent net-
works; connectionist temporal classification

I. INTRODUCTION

A big technological breakthrough in automatic speech
recognition (ASR) occurred by the end of the 1960s with
the development of hidden Markov models (HMM), which
enabled the combination of acoustic, language, and lexicon
models into one probabilistic algorithm. In the next decades,
this became the core of every high-performance ASR system.

From the first commercial ASR solutions of the 1990s until
2012, continued research on HMM-based algorithms brought
few significant advances. The increasing computational power
(e.g. powerful GPUs), the availability of huge amounts of data,
and the (re)discovery of deep learning [1] made possible the
development of a new system [2] that improved the state-of-
the-art performance in over 30%. After that, ASR got back to
the spotlight, leading to hundreds of papers in this area.

An HMM-based ASR system involves a complex pipeline
and is expertise-intensive: dictionaries, phonetic issues, seg-
mented data, Gaussian mixture models to obtain initial frame-
level labels, multiple stages with different feature processing
techniques, and an expert to determine the optimal configu-
rations of many hyperparameters. Furthermore, the objective
function used to train the network is quite distant from the true
performance measure (sequence-level transcription accuracy),
and until recently this paradigm had not been broken.

Ultimately, there is a hype among researchers about apply-
ing only one neural-based system to perform speech recog-
nition in an end-to-end fashion, avoiding the complex tasks
listed above. Graves et al. [3] developed the first successful
algorithm to that end: the connectionist temporal classification
(CTC), whose main appeal is having been specifically de-
signed for temporal classification tasks, i.e., sequence labeling
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problems where the alignment between inputs and targets is
unknown. It does not require pre-segmented training data, or
external post-processing to extract the label sequence from
the network outputs. Since then, CTC has been extensively
used in end-to-end speech recognition systems, and was even
adopted by Google as the default algorithm in Google Voice
Search [4]. More recently, encoder-decoder attention-based re-
current neural networks (RNN) have been successfully applied
to speech recognition [5]. Although promising, the latter are
not investigated in this work.

The goal of this paper is to present the first open-source1

character-based end-to-end speech recognition system for
Brazilian Portuguese the authors have knowledge of. Although
recent work [6] has been done on directly transcribing raw
speech waveforms, this approach is not investigated here.
Instead, an MFCC (Mel-Frequency Cepstrum Coefficients)
feature extraction stage is the minimal preprocessing block.

The MFCC features are then processed by a bidirectional
long short-term memory (BLSTM) block, followed by a
softmax layer and then by the CTC method. Dense layers
were avoided, because they add many learnable parameters,
boosting the overfitting problem. The network is trained at a
text-transcription level, avoiding the need for a pronunciation
dictionary. It is worth mentioning that since the CTC is being
used, no frame-level alignment is necessary.

This work combines elements of [3] (CTC), [7] (topology),
and [8] (character-based recognition); however, it introduces
and develops over a new Brazilian Portuguese dataset that is
a pre-processed ensemble of 4 smaller datasets.

After this introduction, the paper is organized as follows.
Sec. II describes the recurrent network architecture used in
this work, and Sec. III describes the CTC method. Sec. IV
introduces the Brazilian Portuguese speech dataset (BRSD).
Sec. V details the proposed model. Sec. VI develops an
experiment with the recurrent models and the BRSD, and an-
alyzes the network’s transcription results. Finally, in Sec. VII,
conclusions and possible future directions are drawn.

II. NETWORK ARCHITECTURE

A simple multilayer perceptron (MLP) does not handle well
temporal sequences at its input/output, since it is tailored to
model a function that statically transforms input data into a
desired output. This limits its applicability in cases where the
inputs are part of a sequence whose ordering conveys some
intercorrelation among them and, most important, among their
corresponding outputs. One way to deal with these correlations

1Code available at http://github.com/igormq/sbrt2017
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is using the long short-term memory [3] (LSTM), a special
kind of RNN. The standard LSTM has two main parts: a
function that at each time step t maps the input x(t) ∈ R

D

and the previous state h(t−1) into the current state h(t)
∈ R

H ;
and another that maps the current state into the output z(t) ∈

R
K+1. The LSTM also includes a cell state c, responsible for

propagating the information through the time steps with minor
modifications. Mathematically:

a = W xx
(t) +W hh

(t−1) + b = [ai;af ;ao;ag], (1)

i = σ(ai), f = σ(af ), o = σ(ao), g = tanh(ag), (2)

c(t) = f ⊙ c(t−1) + i⊙ g, h(t) = o⊙ tanh(c(t)), (3)

where W x ∈ R
4H×D and W h ∈ R

4H×4H contain the
weight gates; b is the bias; i ∈ R

H , f ∈ R
H , o ∈ R

H ,
and g ∈ R

H are the input, forget, output, and input block
gates, respectively; σ(·) is the sigmoid function; both σ(·) and
the hyperbolic tangent are applied element-wise; and ⊙ is an
element-wise product.

Recurrent networks only correlate samples up to time step t,
i.e., rely only on past information. In speech recognition, due
to the co-articulation effect and even linguistics, the correct
prediction of the current label (e.g. character, word, phoneme)
may rely also on the next labels. Bidirectional RNNs (BRNNs)
address that issue [9] by combining two RNNs, one moving
forward and another backward through time. The output at
each time step is the concatenation of their hidden states:

z(t) = W T
hz[

 h
(t)
;  h

(t)
] + bz, (4)

where W hz ∈ R
K+1×2H , bz ∈ R

2H , and  h
(t)

and  h
(t)

are
the forward and backward hidden state variables, respectively.

In supervised training, where inputs x and desired outputs
y are available, one must define a scalar loss function L evalu-
ated over mini-batches of a training set S to quantify the error
between network predictions ŷ and desired outputs. These
errors are backpropagated through the network to recursively
compute the gradients of the loss function w.r.t. each network
parameter. Due to the nonlinearity of the model, a gradient-
based (e.g. SGD [10], and Adam [11]) method is preferred to
update the parameters. The iteration of gradient calculation and
parameters update constitutes the training procedure. Training
stops when there is no improvement over a validation dataset
the network has not been trained on, which aids the adjustment
of non-trainable parameters (e.g. number of hidden units H ,
learning rate) so as to ensure generalization. The resulting
model is evaluated over the unseen inputs of a test set.

III. CONNECTIONIST TEMPORAL CLASSIFICATION

The label sequence of an utterance X = (x(1), . . . ,x(T ))
is denoted as l = (l1, . . . ,lU ), with blank label ∅ indexed
as 0. Therefore, lu is an integer ranging from 1 to K. The
length of l is constrained to be no greater than the length
of the utterance, i.e., U ≤ T . CTC [3] aims at maximizing
log P(l|X), the log-likelihood of the label sequence given the
inputs, by optimizing the model parameters.

The last layer is softmax: ŷ(t) = exp(z(t))/
∑

k e
z
(t)
k , where

exponentiation is taken element-wise and the K +1 elements

in z(t) correspond to each possible label (including ∅). At
each frame t, the network outputs a vector ŷ

(t) whose k-th
element y(t)k is the posterior probability of label k.

If the output probabilities at each time step are assumed to
be independent given X , then P(p|X) =

∏T

t=1 ŷ
(t)
pt

, where
p = (p1, . . . , pT ) is the CTC path, a sequence of labels
at frame level that differs from l for allowing blank label
occurrences and repeated non-blank labels. Distinct CTC paths
may correspond to the same label sequence, e.g., both “A
A∅BC∅” and “∅AAB∅CC” are mapped to “ABC”. Con-
sidering the set of CTC paths for l as Φ(l), the likelihood
of l is P(l|X) =

∑
p∈Φ(l) P(p|X). The CTC is able to use

unsegmented data exactly for possibly mapping different paths
into the same label sequence, which allows the network to
predict the labels without knowing precisely when they occur.

Unfortunately, summing over all CTC paths is computa-
tionally impractical. A solution is to compactly represent the
possible CTC paths as a trellis. To allow blanks in CTC paths,
the blank label is added at the beginning and the end of l, as
well as between each two original labels in l. The resulting
augmented label sequence is input to a forward-backward
algorithm [12] for efficient likelihood evaluation.

The CTC loss function is the colog probability of correctly
labeling all training examples in training set S:

L(S) = − log
∏

(X,l)∈S

P(l|X). (5)

The loss L(S) is differentiable w.r.t. the network parameters
and can be used by a gradient-based optimization method to
find their best values. In the next section, the composed dataset
from which the training set was extracted is described.

IV. BRAZILIAN PORTUGUESE SPEECH DATASET

Building and end-to-end Portuguese speech recognition sys-
tem using deep learning requires a large dataset, not readily
available for free. For this reason, the Brazilian Portuguese
speech dataset (BRSD) for long vocabulary continuous speech
recognition (LVCSR) was built by combining 4 datasets from
different origins, 3 of them freely distributed.

A) Sid dataset – Kindly provided by Dr. Sidney dos Santos
for research purposes, it contains recordings by 72 speakers
(20 women) from 17 to 59 years old with filed place of
birth, age, genre, education, and occupation. Recorded at 22.05
kHz in non-controlled environment, its 5,777 utterances were
transcribed at word level without time alignment. Contents
span from spoken digits, single words, complex sequences,
spelling of name and local of birth to phonetic covering
and semantically unpredictable sentences. Some excerpts were
discarded due to a systematic transcription error found.

B) Voxforge [13] dataset – Its intent is distributing tran-
scribed speech audio under general public license to aid the
development of acoustic models. Everyone can record and
(anonymously or not) send specific utterances, which makes
for the most heterogeneous corpus. Its Brazilian Portuguese
section contains recordings by at least 111 speakers, not
always with genre/age information, at varied sample rates from
16 kHz to 44.1 kHz, many with low signal-to-noise ratio
(SNR). Its 4,130 utterances were transcribed at word level.
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Fig. 1: Some statistics of BRSD.

TABLE I: Train, valid and test split of BRSD. “M/F” =
male/female, “LL” = label length, “TD” = total duration.

Dataset Speakers (M/F) Utterances (unique) LL (min/max) TD (hours)
Train 390 (150/29) 11,702 (3,437) 2/149 13.01
Valid 21 (14/7) 420 (420) 36/95 0.55
Test 14 (11/3) 280 (280) 39/87 0.35

C) LapsBM1.4 [14] dataset – The Fala Brasil group of
Federal University of Pará uses this corpus to evaluate LVCSR
systems in PT-BR. It contains recordings of 20 unique utter-
ances by each of 35 speakers (10 women), totaling 700 ex-
cerpts, at 22.05 kHz sample rate without environment control.

D) CSLU: Spoltech Brazilian Portuguese dataset version
1.0 [15] – Distributed by Linguistic Data Consortium (LDC)
under catalog number LDC2006S16, the corpus includes
recordings by 477 speakers from several regions in Brazil in
either reading speech (for phonetic coverage) or (spontaneous)
responses to questions. Of its 8,080 utterances recorded at
44.1 kHz sample rate in non-controlled environment, 2,540
have been transcribed at word level alignment, and 5,479 at
phoneme level with time alignment. As pointed in [16], some
audio recordings have lacking or erroneous transcriptions.

Three distinct sets must be defined: train, validation, and
test. Since the LapsBM has been created to evaluate LVCSR
systems, it is the natural choice to provide the test set.
On the other hand, a composition of Sid, VoxForge and
CSLU datasets provides a sufficiently rich train set. However,
randomly separating part of the train set for validation could
bias the results, since one has no control over repeated
speakers/utterances. Due to its particular organization (unique
utterances per speaker), the LapsBM dataset provided the best
solution: it was randomly partitioned into a validation set with
21 speakers (7 women) and a test set with the remaining 14.

All datasets were pruned of samples with no/wrong tran-
scription, too short recordings, and other defects that could
produce misleading results. All audio files were resampled at
16 kHz. Recording lengths concentrate around 3 s but can
reach 25 s, as seen in Fig. 1a. The number of utterances per
speaker is shown in Fig. 1b; the highest peak refers to the
anonymous contributions in the VoxForge dataset. In Figs. 1c
and 1d, one sees the relation unique/total utterances and the
utterance duration distribution per sub-dataset, respectively. A
summary of the dataset partitions is shown in Tab. I.

In Tab. II, the test set of BRSD was evaluated against the
three major commercial systems with public API. Google API

TABLE II: Commercial systems on BRSD (02/15/2016).

System LER WER
Google API 10.25% 27.83%

IBM Watson 11.38% 35.61%

Microsoft Bing Speech 14.77% 40.84%

has the best performance on both label error rate (LER) and
word error rate (WER) [17]. The LER span is 4.5%, while the
WER span is 13.0%—indicating that using a proper language
model can make a huge difference in real ASR systems.

The most important datasets employed in the ASR literature
are the 5.4-h TIMIT [18], the 73-h Wall Street Journal [19],
[20](WSJ), and the 300-h Switchboard [21], all in English.
For its non-controlled environmental conditions, multiplicity
of acquiring hardware, and distinct speaker dialects, the 14-h
BRSD is far more stringent than TIMIT and (in spite of its
moderate length) even WSJ. On the other hand, Switchboard
contains conversational speech, not found in BRSD.

V. PROPOSED MODEL

The proposed architecture consists of a BLSTM layer with
H (determined in Sec. VI-B) hidden units, followed by a
softmax layer and by the CTC loss function [22].

The input was preprocessed in window frames of 25 ms
and hops of 10 ms. From a bank of 40 log-filters in mel-scale,
12 MFCCs and the log energy were computed; concatenated
with their first and second differences (i.e. delta / double delta
coefficients), they form a vector of 39 features.

The model outputs probabilities of character emission in-
stead of phonemes. Thus, the label set is {a, . . . ,z,space,∅},
where “space” delimits word boundaries. The target sequences
in the dataset were simplified to rely only on this reduced
label set, i.e. punctuation, hyphens, and stress marks were
removed/mapped to standard labels (e.g. á→a, ç→c). Finally,
the output sequence was provided by a greedy decoder [3] for
a fast evaluation in the train and validation sets. For the test
set, a width-400 beam search decoder [8] was employed.

The recurrent weights were initialized with orthogonal ma-
trices sampled from a normal distribution [23], which helps
to alleviate the vanishing gradient problem [24] over long
time steps. The non-recurrent weights were initialized from
a uniform distribution using Xavier method [25], default in
deep learning architectures. Also, the forget gate bias was set
to one, which improves the LSTM performance [26].
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TABLE III: Model performance versus network capacity.

H # parameters validation test
128 179k 43.17% 39.67%

256 620k 41.50% 39.34%

512 2.3M 39.68% 37.28%

1024 8.8M 38.63% 36.08%

The training was carried out with Adam [11] and learning
rate of 10−3 (carefully chosen), unless stated otherwise over
30 epochs (due to time constraints), with a batch size of
32. A weight decay [1] of 10−4 was applied to all network
parameters as a default regularizer. Dropout and variational
dropout regularizers were also investigated (in Sec. VI-C).

VI. EXPERIMENTS AND ANALYSIS

In this section, we report three experiments: ‘1’ investigates
whether the BRSD ensemble can generalize better than its
subsets; ‘2’ searches for the best value of the number of hidden
units H; ‘3’ investigates the use of more advanced regulariza-
tion methods as complements to weight decay. Finally, the
overall network’s transcription results are analyzed.

A. Experiment 1

The effects of using the overall train set or each of its sub-
sets were compared in a network with H = 128 hidden units.
Fig. 2 shows train/validation evolution for each case. One sees
that each subset exhibits a large bias between validation and
training values—indicating ill generalization. Yet the entire
dataset yields the best validation behavior and the lowest bias
w.r.t training; moreover, training LER does not lower towards
zero, suggesting that the model capacity should be increased.

B. Experiment 2

The model capacity was expanded by increasing the number
of hidden units. From Tab. III, one clearly infers that more
hidden units are advantageous: the label error rate (LER) drops
from 43.17% to 38.62% in the validation set as the number
of units increases from 128 to 1024. Their number was not
further increased due to computational power limitations.

C. Experiment 3

Dropout [27] is an efficient method for preventing overfit-
ting and regularizing the network, and it has been widely used

TABLE IV: Dropout-based regularizers: LER (dropout rate).

H validation set test set
dropout var dropout dropout var dropout

128 42.07% (20%) 40.70% (10%) 38.43% 37.64%
1024 35.16% (20%) 32.66

in convolutional neural networks [28], [29]. Applying dropout
to RNN, however, is not straightforward [30]. Proposed by Gal
et al. [31], variational dropout is a new mathematical approach
developed to this end. While previous methods only applied
dropout to the non-recurrent weights, Gal et al. also exploited
their application to the recurrent weights.

Tab. IV shows the results of dropout and variational dropout
with H = 128 hidden units. For H = 1024, only the
results with variational dropout are available due to memory
restrictions—traditional dropout calculates a different mask for
each time step, consuming a lot of memory. Using dropout has
its advantages, reducing absolute LER in 3% of when enabled.
Variational dropout outperformed dropout in all setups.

D. Complete model

After several design choices, the best model has a BLSTM
with H = 1024 hidden units and employs as regularizers
variational dropout with dropout probability of 20% and
weight decay of 10−4. It was trained for more than 30 epochs
until it overfitted. The best validation result occurred in epoch
41, with an LER of 34.15%, while in the test set an LER of
31.53% was found. The difference between the rates is due to
the beam search decoder applied to the test set. These results
are close to that obtained by Graves et al. [7] with almost the
same number of parameters, but roughly 17% higher when
compared to commercial systems (Tab. II), which are far more
complex and take advantage of lexicon and language models.

E. Transcription analysis

Some errors that occur in the transcription seem phoneti-
cally justifiable, as pointed in [7]. In Tab. V (a), the network
changed “flexa” (Lucia’s mid name) into “flecha” (arrow),
which have the same sound. This misspelling might have
occurred because the character sequence “cha” has a higher
number of occurrences in the training set than “xa”.

The network also made some “mistakes” for transcribing
some speakers’ peculiarities, depicted in Tab. V (b). While
the ground truth is “tem se” the network outputs “ten ci”,
which sounds equal. It seems that the network transcribed the
sentence the way it was spoken.

At first sight, the rationales behind network mistakes in
Tab.V (a) and (b), both associated to phonetically equivalent
sounds, may seem contradictory. Nonetheless, the sequence
“nci”, ignoring the space character, has a higher occurrence
rate than “mse” in Portuguese, which can facilitate this wrong
transcription. One way to overcome the language’s multiplicity
is increasing the training set, thus allowing the network to
internally learn how to spell correctly.

Finally, an interesting fact is demonstrated in Tab. V (c).
The model changed one letter in the word “explicacoes”
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TABLE V: Examples of network mispellings – T = ground
truth sequence, M = sequence transcribed by the best model.

a
T esta instalado na casa do avo de lucia flexa de lima
M esta estalado na casa do arode duscia flecha dima

b
T tem se uma receita mensal de trezentos e quarenta mil dolares
M ten ci uma receira mensalbe trezentos e quarenta mil bolarte

c
T ele podia dar explicacoes praticas para sua preferencia por faroestes
M ele putiadar esplicacoes cratifos para soubre ferencia por faraeste

(explanation), replacing “x” by “s”. This substitution could be
explained due to regional dialects. People from Rio de Janeiro,
for example, pronounce the “x” in “explicacoes” like “sh” as
in /leash/, while people from other regions tend to pronounce
it as a sibilant “s” as in /juice/. Indeed, listening to the dataset
recordings, one can notice that the majority of the speakers
are not from Rio de Janeiro, which explains the behavior of
the network. All in all, misspellings, like in Tab. V (b) and (c),
could be easily corrected with the use of a language model.

VII. CONCLUSIONS AND FUTURE WORKS

After enough training of the best model, an LER of 34.15%
was achieved in the validation set. In the test set, the sequences
were decoded by a beam search decoder with a beam width
of 400 and no language model, achieving an LER of 31.53%,
which is comparable to the results of Graves et al. [7] and
Maas et al. [8]; however, much improvement is needed to
achieve results similar to those of commercial systems.

Stacking more layers is crucial to improve model’s accuracy,
as shown in [32]; unfortunately, this path could not be taken
due to insufficient computational power. Using a language
model is an essential tool for any reliable ASR system, and
none has been applied yet. Further investigation of stacking
layers and different language models (e.g. RNN-based [33],
WFST [34]) are the next steps in this work.
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