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Foreground Segmentation for Anomaly Detection in
Surveillance Videos Using Deep Residual Networks
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Abstract— Efficient anomaly detection in surveillance videos
across diverse environments represents a major challenge in
Computer Vision. This paper proposes a background subtraction
approach based on the recent deep learning framework of
residual neural networks that is capable of detecting multiple
objects of different sizes by pixel-wise foreground segmentation.
The proposed algorithm takes as input a reference (anomaly-
free) and a target frame, both temporally aligned, and out-
puts a segmentation map of same spatial resolution where
the highlighted pixels denoting the detected anomalies, which
should be all the elements not present in the reference frame.
Furthermore, we analyze the benefits of different reconstruction
methods to the restore original image resolution and demonstrate
the improvement of residual architectures over the smaller and
simpler models proposed by previous similar works. Experiments
show competitive performance in the tested dataset, as well as
real-time processing capability.

Keywords— Deep learning, convolutional neural networks,
ResNet, residual networks, background subtraction, foreground
segmentation, anomaly detection, surveillance, real-time.

I. INTRODUCTION

Deep convolutional neural networks have been pushing the
state-of-the-art in terms of performance in classification tasks
[1], [2], [3], as well as in other diverse visual tasks, leveraged
by the self-learned representation of data, that progressively
builds complex descriptors throughout the model’s many lay-
ers. Recent works on Residual Networks (ResNets) [3], [4]
attempt to overcome the increasing optimization difficulty and
performance deterioration brought about by the increasing
depth of models by adding skip connections to bypass a small
number of convolutional layers at a time. Residual network
based models have become the default Convolutional Neural
Network (CNN) of choice for many different tasks, not only
because they are one of the top performing architectures,
but also because they converge for a wider range of hyper-
parameters while still keeping a simple modular architecture.

In such a scenario, it is natural to attempt to port these
solutions to image segmentation at pixel level. Recently,
researchers have started adapting well-known classification-
oriented architectures to pixel-wise prediction with successful
results [5]. Although this is an active research area [5], [6],
[7], few works aim to solve the problem of dense anomaly
detection at full-resolution [8], [9].

Background subtraction is an essential part of many com-
puter vision frameworks and can be found in a wide range
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of image processing applications, hence the importance of
this study. Previous works using deep learning [9] rely on
patch-wise approaches to construct full-resolution foreground
segmentation maps, which leads to massive recalculation of
features and waste of both computational resource and time.

The present work investigates how background subtraction
and anomaly detection can be efficiently performed pixel-
wise using CNNs. For our purpose, we consider as anomaly
objects not present in the reference and do not take into
account actions nor events. We propose models that only
require temporally aligned reference and target frames as input
and compute pixel-wise segmentation maps in real-time with
competitive performance in the evaluated database.

In the next section, we review the related work on image
segmentation and anomaly detection using CNNs. Sections III
and IV explain in details the original architecture in which this
work was initially based as well as the proposed modifications,
respectively. Section V briefly introduces the dataset used and
discusses the obtained experimental results. The last section
summarize our conclusions.

II. RELATED WORK

Our system is inspired on the work of Brahams and Van
Droogenbroeck [9], who used a modified Lenet5 [10] deep
network to predict the probability of each input image pixel be-
longing to the foreground given its vicinity and the correspon-
dent background model. Their original architecture predicts a
single pixel at a time for each image patch under analysis,
thus requiring as many runs as there are pixels in the image
if one wants to compute a dense segmentation map. Long et
al. [5] avoided similar efficiency problem in segmentation by
transforming the fully-connected layers of their models into
the convolutional equivalents and then applying bilinear up-
sampling to the coarse output map. By doing so, they were
able to recover the original input resolution, thus dispensing
with the need for sliding window both during the training and
evaluation phases.

The reconstruction problem has been approached in dif-
ferent manners, e.g., in [6], [11] the authors use encoder-
decoder networks to learn the representation of data and its
reconstruction. They apply unpoolings to obtain sparse up-
sampled maps which preserve local spatial information and
(de)convolutions to populate these higher resolution maps.
Likewise, we also evaluate this kind of approach on our
foreground segmentation task and compare it with the bilinear
up-sampling one.

Recently, Wang et al. [12] also presented a CNN model
to segment frames in the CDNET database. Their approach,
heavily based on [9], consists of a cascade of two 5-layer
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Fig. 1. Original network of [9] for background subtraction. It consists of two feature stages, each composed of one 5× 5 kernel convolution and one 3× 3
non-overlapping max-pooling, followed by two fully-connected layers whose output is the patch-centered pixel foreground probability.

input image segmentation mapfeature maps

reconst
ruction

Fig. 2. The pipeline of our foreground segmentation system proposal. The deep neural network processes the input image and outputs a stack of feature
maps, onto which we apply one of the studied up-sampling methods and obtain, at the end, the reconstructed foreground probability map.

networks, with the second refining the coarse predictions of
the first, whose input are the RGB channels of the image. Even
though their reported results are outstanding and the best so far
for CDNET, they rely on human intervention to manually pick
annotated training frames as well as on video-specific training.
These characteristics make their model suited for groundtruth
generation, but inadequate for real-time anomaly detection.

DeepAnomaly [8], on the other hand, was proposed with
this exact purpose, real-time anomaly detection. It extracts
intermediate features from pretrained CNNs and applies Gaus-
sian model variants to represent normal modes and detect
anomaly. Its application domain are agricultural fields, which
are uncluttered scenarios with mainly periodic background
motion.

III. ORIGINAL CONVOLUTIONAL NETWORK

The authors in [9] propose a Lenet5-like architecture to
perform per-pixel classification as foreground or background.
Their system takes as input the grayscale versions of both
the target image and its background model, and constructs the
segmentation map by independently processing patches around
each pixel image. Thus, it constructs an output segmentation
map of the same resolution as the input.

The CNN model is fairly simple and small: two fea-
ture stages having each one a single convolution operation
followed by rectified linear units (ReLU) and max-pooling
for subsampling; and two fully-connected layers at the end
playing the role of a classical feed-forward neural network for
classification (Figure 1). The convolutions have 5× 5 kernels,
stride of one and feature map size of 6 and 16, respectively;

the poolings, 3×3 non-overlapping receptive fields; the fully-
connected layers, 120 and 6 units, in that order. The input
is a patch of 27 × 27 pixels in size, and the output is a
single sigmoid neuron that yields the confidence (probability)
of the central pixel belonging to the foreground class. The
soft segmentation map generated by recursively applying the
model to all image pixels is then thresholded at 0.5 to generate
the equivalent binary segmentation mask.

The major drawback of this system is the wasteful usage of
computational resources, since there is considerable overlap
between neighboring pixels. The authors do not explore this
property and if properly handled could considerably reduce
computation time and/or reduce energy consumption during
evaluation. Although it may be highly parallelizable to sepa-
rately compute each patch, this calculation could be avoided
altogether.

IV. PROPOSED CONVOLUTIONAL NETWORKS

Contrary to the original patch-wise approach, we calcu-
late the whole segmentation map at once (Figure 2), taking
advantage of the convolutional layers to perform the fully-
connected role, i.e., we replace the latter by 1×1 convolutions.
Consequently, our architecture becomes fully convolutional
and able to efficiently process images of any given size in
one single pass while still retaining its highly parallel nature.
Furthermore, each output pixel is evaluated based on a larger
region of the input, hence aggregating more information than
the rather small 27× 27 patch for the classification.

This modification, however, implies the reduction of the
output due to down-sampling operations done throughout the
network, generally either from pooling operations (Figure 1) or

915
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Fig. 3. Base residual network [3] from which we add the reconstruction network. There are only 3 × 3 convolutions and two 2-strided convolutions for
spatial dimension reduction. The dashed shortcuts increase the number of feature maps at the same time they reduces resolution.

strided convolutions (Figure 3), that is, convolutions where the
kernel shifts by more than one input position. In order to revert
this issue and recover the original resolution, we investigate
three different up-sampling options:

• Simple bilinear interpolation of the final feature map;
• Deconvolutional network with (linear/non-linear) decon-

volutional layers to rebuild the feature map;
• Decoder network with interleaved bilinear interpolations

and convolutions to restore the compressed feature map.

We consider two reconstruction methods with learnable
parameters, each inspired by different previous works. The
first, based on the DeconvNet network of Noh et al. [6],
interleaves unpoolings, which up-samples the feature maps
and places their values according to the stored pooling indexes
of the max locations, with a series of stacked deconvolutions
to populate those sparse maps. The second, derived from the
SegNet [11], discards the intermediate fully-connected layers
present in [6] and employs regular convolutions, rather than
deconvolutions, to fill in the sparse maps. According to the
authors in [11], the latter approach considerably reduces the
network complexity (number of parameters), and eases down
the training process, dispensing with additional assistance such
as region proposals, which we do not resort to in any of our
methods.

One may argue that the bilinear interpolation method is a
mere special case of the deconvolutional network and thus
could be achieved by the latter learning the appropriate set of
filter values. However, the complex architecture imposed by
the stack of deconvolutions makes this phenomenon difficult
to happen. Hence, it is worthwhile to separately analyze the
bilinear case, which is the reconstruction method of choice for
the basic network in [5].

We apply the discussed modifications to the network of [9],
obtaining three different models termed: Bilinear, Deconv,
and Decoder. We further construct a variant of the Deconv
where we do not use activation functions in-between decon-
volutions of the reconstruction network (Deconv-linear) in
order to infer how much of the deconvolution potential we
are actually able to explore.

Besides the aforementioned study, we also analyze the ben-
efits of a more modern and deeper architecture, i.e, the ResNet
[13], to extract the underlying input image descriptors fed to
our up-sampling structures. Residual networks have proven to
be powerful architectures and won first place in several tracks
in both ILSVRC [14] and COCO 2015 [15] competitions. By
relying on residual models rather than on the Lenet5-based
models, network representational power ought to be greater as

well as more general, thus allowing better performances. As
is common in classification-adapted models, we drop the final
average pooling present in the original ResNet proposition
since it completely removes all remaining spatial information
of the already small feature map [5]. As far as our knowledge
goes, this is the first work to propose a residual deep learning
network for the foreground segmentation task.

Similarly to the previous case, we analyze the same combi-
nations of reconstruction in the residual models and observe
how the behavior carries over. We train direct bilinear interpo-
lation (Residual-Bilinear), deconvolutional network with both
non-linear activations (Residual-Deconv) and no activation
whatsoever (Residual-Deconv-linear), and variants of the
decoder network. Our base ResNet model (Figure 3) has 32
layers and no bottleneck architecture.

A fundamental difference in our SegNet-based residual
architecture is that the encoder is implemented with strided
convolutions instead of max-poolings, therefore no unpoolings
can be done. This is evident since there are no indexes to be
kept and later used as reference to sparsely up-sample the
feature map. We tackle this issue by progressively performing
bilinear interpolations instead, and setting the up-sampling fac-
tors equal to the size of the stride in down-sampling convolu-
tions. Therefore, our residual decoder architecture (Residual-
Decoder-Deep) interleaves bilinear up-sampling layers, which
progressively recover the original resolution, with residual
blocks, which are the residual equivalents of the trainable
decoder filter banks in [11]. The main drawback of a decoder
of same size as the encoder is the computational burden
imposed, after all, network depth is doubled. Hence, we
evaluate a smaller variant with single convolutions rather than
residual blocks (Residual-Decoder-Shallow).

V. EXPERIMENTAL RESULTS

Following our inspirational work [9], we train and validate
our models in the CDNET 2014 database [16], which targets
change and motion detection applications. This dataset is a
compilation of fixed surveillance camera videos from different
sources covering a wide range of detection challenges, such
as camera jitter, intermittent object motion, shadows, etc.
Furthermore, it disposes of accurate pixel-level foreground
segmentation, exactly what we intend the networks to learn.

We define our training and validation sets as follows: the
first 70% of each video’s annotated frames are for training,
and the last 30% for validation. Aiming to diminish the class
imbalance problem, we suppress all training frames that do
not have any foreground pixel whilst preserving the validation
set intact, thus keeping its representativeness.
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Fig. 4. Modification of the decoder network of the SegNet-derived model
to employ bilinear interpolations between convolutional blocks rather than
unpoolings.

We express performance of models in terms of their F1 met-
ric, which correlates well to the average ranking of methods
in CDNET according to [17], and of their false negative rate
(FNR), which tends to be high due to the class imbalance and
is a delicate matter in an anomaly detection system. The F1
measure represents the compromise between precision (Prec)
and recall (Rec) measurements, and it is defined as their
harmonic mean

F1 = 2
Prec× Rec

Prec+ Rec
,

or, equivalently

F1 =
2× true pos

2× true pos+ false neg+ false pos
.

Before training, we perform some necessary preprocessing
steps. We apply a median filter to the first 150 frames of
each video, which do not have groundtruth mask, and are not
used neither for training nor validation, to obtain the static
background model employed as reference in our pipeline.
Next, we extract the imposed region of interest, isolate the
grayscale images of both target and reference frames, scale
them down to 256×192 pixels, and randomly apply horizontal
flip to artificially enlarge the training set.

The cost function we employ in optimization is the average
binary cross-entropy over all pixel positions i

−
∑
i

(ti ln(yi) + (ti − 1) ln(1− yi)) ,

between the target class label ti and the foreground class
probability yi. The solver is the Adam algorithm [18] with
Torch’s default moment coefficients. We train for 80 epochs
with an initial learning rate of 0.01, learning rate step decay
of 50% each 10 epochs, regularization of 0.0002 and mini-
batch size of 16. We adopt standard initialization practices
for our models: the He initialization [13] for convolutional
layers, bilinear interpolation filter values for deconvolutional
layers, and unitary scale factor with null offset for batch
normalization layers. For the original network, however, we
follow the guidelines given in [9].

First, as a control test, we evaluate the performance of the
architecture defined in [9] on the whole CDNET database,
since the authors of [9] do not take into account some key

TABLE I
FALSE NEGATIVE RATE AND F1-MEASURE OF THE BEST RESIDUAL

RECONSTRUCTION MODELS FOR THE VALIDATION SET.

Residual model FNR F1

Bilinear 11.9% 83.9%
Deconv 13.0% 84.2%
Deconv-Linear 13.7% 84.1%
Decode-Deep 16.2% 82.4%
Decode-Shallow 11.4% 84.9%

video categories in their reported results. Because there are
no references to the learning rate decay schedule nor the
regularization used, we experiment with all six combinations
of either no regularization or 0.0002, and no learning rate
decay, 50% at each 10 epochs or 90% at each 30 epochs. All
unmodified implementations of the original model oscillate at
about 62% of F1 score in the validation set towards the end of
training. We show the performance curve for one such model
(Original in Figure 5).

Not all modified versions perform better than the original
model, the Decoder variant exhibits ∼ 8% higher FNR (Figure
6) and similar F1. This behavior is explained by the removal of
the intermediate fully-connected layer in that model, which has
a rather harmful effect because the network was already small
(6 layers). On the other hand, the deconvolutional versions
converged to considerably higher F1 (∼ 69%) and are the
best reconstruction schemes for the original network. T he
non-linear deconvolution (Deconv) oscillates more than its
linear counterpart (Deconv-linear), confirming that despite
having greater representational capacity, learning non-linear
deconvolutions is a more difficult task. Bilinear interpolation
yields ∼ 65% of F1 score, not very different from the
Decoder.

Next, we carry these approaches to residual architectures
and observe not only a much steadier behavior, but also much
better scores (Figure 7). With exception of the Residual-
Decoder-Deep, whose best score is 82.4%, all other methods
converge to values around 84% with the difference among
them inferior to 1%. Then, we analyze the FNR (Table I) to
determine whether there is a best model and which one it
is. Even though the competition is tight, Residual-Decoder-
Shallow achieves the highest F1 (84.9%) while having the
lowest FNR (11.4%), 1% lower than the second best FNR.

Our shallow enconder-decoder network, which employs
bilinear interpolation between convolutional blocks (Figure 4)
rather than using the pooling indexes of the encoder network
to sparsely up-sample the feature map in the decoder, has only
two additional learnable layers on top of the base network and
is the best performing model among the tested architectures,
running under 5.1 ms per preprocessed frame on a 6-core
Intel® i7 6850K with NVIDIA® GeForce® GTX 1080 at a
frame resolution of 256× 192 pixels. Not only the Residual-
Decoder-Shallow, but virtually all residual reconstruction net-
works studied have state-of-the-art results in the CDNET2014
database, losing only to the CNN proposed in [12], whose aim
is groundtruth generation of videos and not anomaly detection.

917
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Fig. 5. F1-score of the original architecture [9] and our variants for the
validation set.
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Fig. 6. False negative rate of the original architecture [9] and our variants
for the validation set.
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Fig. 7. F1-score of our residual models for the validation set.

VI. CONCLUSIONS

Throughout this work we studied different deep convo-
lutional networks to segment the foreground, regarded as
anomaly with respect to the background, in videos from
surveillance cameras. We proposed fast and efficient models
that compute the pixel-wise segmentation map in real-time
taking as input temporally aligned reference and target frames.
The proposed techniques are competitive with current state-of-
the-art methods for the CDNET database [16] and, according
to the CDNET online ranking, seconds only to [12], which
has a distinct purpose as discussed in Section II.
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