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ABSTRACT

In a previous approach to the development of a character-level end-to-end automatic speech recognition

(ASR) system using deep learning, most of the network mistakes seemed easy to identify. This paper

investigates the effects of two different post-processing schemes towards the automatic correction of

such errors without resorting to any complex decoding phase: a simple spell-checker algorithm, which

produced no noticeable improvement on the character error rate; and a grapheme-to-phoneme converter,

which confirmed that almost 5% of the errors found are phonetically motivated, and thus amenable to be

mitigated by a properly designed language model.

0 INTRODUCTION

In the last decade or so, the advent of deep learning

(DL) has drastically impacted areas [1] so diverse as

pedestrian detection [2], face recognition [3], disease

identification [4], machine translation [5], image classi-

fication [6], detection [7] and segmentation [8].

In automatic speech recognition (ASR), for in-

stance, a major accuracy improvement was achieved

in 2012, when the well-established Gaussian mixture

model (GMM) and hidden Markov model (HMM) were

replaced by a deep neural network (DNN) [9]. From

that work on, the ASR area has seen successive bench-

mark breakings [10, 11, 12], even surpassing the human

capability in some current scenarios [13].

Unfortunately, building an entire ASR system is

still a complex task, requiring a GMM module to ob-

tain the initial frame-level labels, multiple stages of

training with hand-designed features, and an expert to

determine the optimal configuration of many hyperpa-

rameters. Recently, following the trends in the com-

puter vision area—where end-to-end systems have in-

deed transposed human capabilities—, researchers have

been trying to find a neural-based system to perform

speech recognition in an end-to-end manner. Among
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such end-to-end ASR systems, two have excelled: the

connectionist temporal classification (CTC) [14], and

the sequence-to-sequence models (seq2seq) with atten-

tion mechanism [15].

The CTC method, proposed by Graves et al. [14],

was the first successful end-to-end ASR algorithm, and

since then has been widely employed by giant compa-

nies [16, 12] to develop their own systems. This simple

method overcomes one of the most challenging prob-

lems in ASR, which is the time alignment between the

frame-level features and the final text transcription, thus

being able to transcribe an utterance without knowing

precisely where it occurs.

Another effective algorithm is the seq2seq with at-

tention mechanism [17], which first appeared in neural

machine translation, where an encoder compresses the

input language sequence into a vector, and a decoder

(supervised by the attention mechanism) decompresses

this vector into the desired language.

This paper focuses on the analysis of a CTC-based

end-to-end ASR for the Portuguese language. Previous

work [18, 19] has shown that gathering several small

Portuguese datasets enabled the training of a character-

level ASR deep model, yielding a character error rate

(CER) of 23.15%, only 8.4%–12.9% below commer-

cial systems, without using a language model or any

additional decoding scheme. In such a system, most

of the resulting errors were due to homophone or near-

homophone transcriptions (e.g., ‘dessert’ and ‘desert’),

the same conclusion the authors of [20] had arrived at.

In this work, we investigate the impact of two post-

processing methods on the CER attained by the end-to-

end ASR system originally proposed in [18]. Specif-

ically, a spell checker based on word probability and

a grapheme-to-phoneme (G2P) algorithm are incorpo-

rated to the system output. The spell checker algorithm

tries to find the most probable word sequence in a tran-

scription within a word dictionary, thus being able to re-

place wrong words in a sentence by other words, while

the G2P algorithm is trained on a phonetic dictionary

that contains the relationship between words and their

phonetic spellings The G2P algorithm is applied after

the ASR transcriptions as an attempt to assess of the

ASR’s mistakes.

The contents of this paper are organized as follows.

Sec. 1 introduces the basic end-to-end ASR model [18]

based on recurrent neural networks, long short-term

memories, and the CTC cost function. In Secs. 2 and 3,

the spell checker and the G2P algorithms are intro-

duced, respectively, and their implementation details

are discussed. The experiments on the incorporation of

the spell-checker and G2P algorithms to the ASR sys-

tem are discussed in Sec. 4. Finally, conclusions are

given in Sec. 5.

1 NEURAL-NETWORK-BASED ASR

MODEL

Traditional neural networks do not correlate inputs

with some sequential hierarchy, such as speech or any

other temporal data. For such signals, one must use

a recurrent neural network (RNN), which at each time

step t receives at its input a new chunk of the sequence

x
(t)

∈ R
D and stores the current and past information

in a hidden-state vector h ∈ R
H such that

h
(t)

= tanh

(

W hxx
(t)

+W hhh
(t−1)

+ b

)

, (1)

where W hx ∈ R
H×D and W hh ∈ R

D×D are the in-

ternal network weights and b ∈ R
H is the internal bias.

Feeding the next layer with the hidden states of the cur-

rent layer enables deep recurrent networks, as depicted

in Fig. 1, whose Lth (last) layer’s output z ∈ R
C is

such that

z
(t)

= W hzh
(t)
L

+ bz, (2)

where W hLz ∈ R
C×H is the output weight matrix,

bz ∈ R
C is the output bias, and h

(t)
L

is the hidden state

of layer L at time t.
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Figure 1: Example of deep RNN where output z exists

only at odd timesteps.

The training of an RNN is similar to the training of

traditional neural networks [1], where the outputs are

evaluated against a cost function and the resulting er-

ror is backpropagated to the weights. In the RNN case,

however, besides the error backpropagation through the

network layers, there is also a backpropagation through

time (BPTT), where the backward signal flows through

the timesteps too, and a simple gradient-based opti-

mization technique is applied.

Despite being designed to correlate samples along

a sequence, the RNN training may fail in this task due

to either diverging or vanishing gradient problems [21].

A harsh method to deal with gradient divergence is the
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gradient-norm clipping [22], which modifies the gradi-

ent δ according to

δ =

{

η δ
‖δ‖2

if ‖δ‖2 ≥ η,

δ otherwise,
(3)

where η is a regularizer threshold, commonly set to

{5, 10, 400} [22, 12].

Long short-term memory [23] (LSTM) is a special

kind of RNN that was explicitly designed to deal with

the vanishing gradient problem. Rather than modifying

the hidden state at every time step, the LSTM has four

gates of size H responsible for controlling which infor-

mation should persist. Moreover, it also has a cell state

c ∈ R
H that barely suffers modifications along time,

attenuating the vanishing gradient problem. Mathemat-

ically, the LSTM is described by

a = W hh
(t−1) +W xx

(t) + b = [ai;af ;ao;ag]

i = σ(ai), f = σ(af ), o = σ(ao), g = tanh(ag)

c(t) = f ⊙ c(t−1) + i⊙ g, h(t) = o⊙ tanh(c(t)),

(4)

where W h ∈ R
4H×H and W x ∈ R

4H×D are the

weights, b ∈ R
4H is the bias, σ(·) is the sigmoid func-

tion applied element-wise, ⊙ is the element-wise prod-

uct, and i, f , o, g ∈ R
H are the input gate, forget

gate, output gate, and input block gate, respectively.

One of the major issues in ASR systems is the time

alignment between the utterances and their correspond-

ing transcriptions: a traditional ASR system requires

a frame-level annotated transcription, which is time-

consuming and computationally expensive to obtain.

The so-called connectionist temporal classification [14]

method was created to address this issue. The CTC

consists of a softmax output layer ŷ = exp(z)/
∑

i zi

and a different loss function. The output of the softmax

layer has size (C +1), where the extra class is reserved

for the occurrence of the blank label ∅. Given an ut-

terance X = (x(1),x(2), · · · ,x(T )) and its label se-

quence l = (l1, . . . , lu, . . . , lU ), where (2U + 1) ≤ T ,

the CTC method tries to maximize the log-likelihood of

the label sequence given the inputs

P(p|X) =
T
∏

t=1

ŷ(t)pt
, (5)

where p = (p1, . . . , pt, . . . , pT ) is the CTC path, and

each ŷi, i = {1, . . . , C} is considered independent for

a given input. The CTC path p allows the occurrence of

the blank label and repetitions of non-blank labels, and

it is easily mapped to its corresponding label sequence l

by removing the repetitions and the blank labels. Then,

the likelihood of l can be evaluated as a sum of all CTC

paths that can be mapped to the same label sequence l,

that is

P(l|X) =
∑

p∈P(l)

P(p|X), (6)

where P(l) is the set of all CTC paths associated to a

given l. Performing this mapping of different paths into

the same label sequence is what makes it possible for

CTC to use unsegmented data, as it allows the network

to predict the labels without knowing when they occur.

Summing over all paths is time-consuming, which

can be avoided by using the forward-backward algo-

rithm [24]. Finally, the CTC loss function l is defined as

the colog probability of correctly labeling all the train-

ing examples in some training set S:

l(S) = −
∑

(X,l)∈S

logP (l|X). (7)

This cost function is differentiable w.r.t. the outputs of

the RNN z and can be used interchangeably with any

other cost function for training the network parameters.

The network outputs at each timestep t a probabil-

ity distribution over the set of labels ŷi, i = {1, . . . , C}.
In order to generate the label sequence l, one may ar-

gue that the best way of decoding is to generate a path

p by choosing the label with the highest probability at

each timestep t. This greedy decoding scheme, how-

ever, does not consider that the probability of a label

sequence l is the sum of all CTC paths, as shown in

Eq. (6), which is the idea behind a more powerful de-

coding scheme called beam search decoder [25].

1.1 ASR system characteristics

The final ASR model devised in [18] has 5 bidi-

rectional LSTM layers with 256 hidden units each. At

the input, the utterances were preprocessed using 13

mel-frequency cepstral coefficients (MFCCs), calcu-

lated over a window of 25 ms with a 10-ms displace-

ment, along with the delta and delta-delta coefficients,

leading to a total of 39 features. The last recurrent layer

was projected onto 28 labels (‘A’, ‘B’, . . ., ‘Z’, ‘blank

label’, and one special label to delimit the word bound-

aries), and a softmax layer was applied to score those

labels.

The Brazilian Portuguese dataset [18], an ensemble

of four datasets, three of them publicly available, was

used to train the model. The training was carried out

using the Adam [26] optimizer, with a learning rate of

10−3 for over 100 epochs. As a regularizer, a weight

decay of 10−4 was applied to all weights in the model

and a variational dropout [27] of 20% was applied at

each layer. During the training phase, it was observed

that only a few batches had a high gradient variance,

which did not exceed 400; then, a gradient norm clip-

ping with η = 400 was used just as a precaution.

The best model reported a character error rate of

24.37% on the test set, using a beam-search decoding

algorithm with a beam width of 100. In the following

section, all the experiments are developed over the tran-

scription predicted by this trained model.

At each time step, the network outputs the label dis-

tribution and one may decode the sequence using either
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a greedy method [28] (by choosing the label with the

highest probability at time t) or by using the non-greedy

beam-search decoder proposed in [25]. Even after using

a more robust decoding algorithm, however, some tran-

scriptions still contain errors, as pointed out in [20, 18].

Regarding this matter, Secs. 2 and 3 discuss two post-

processing strategies devised to potentially mitigate the

ASR transcriptions errors.

2 SPELL CHECKER

Given a possibly misspelled word (i.e. sequence of

characters) w, a spell checker tries to find the correct

word c∗ by maximizing the probability of a candidate c

being the intended correction out of all possible candi-

dates C, that is

c∗ = argmax
c∈C

P(c|w). (8)

Using the Bayes’ theorem and noticing that P(w) is the

same for every candidate c, the probability P(c|w) can

be determined as

c∗ = argmax
c∈C

P(w|c) P(c), (9)

where c ∈ C is the candidate model, the prior P(c) is

the language model, and P(w|c) is the noisy channel

model. A simple algorithm based on the mathematical

model described above, inspired both on Peter Norvig’s

tutorial [29] and Mozilla’s project Deep Speech [30], is

summarized in Alg. 1.

The algorithm starts by splitting the sentence into

words. Then the candidate model computes all pos-

sible words that are up to an edit (insertion, deletion,

substitution, or transposition) distance of 2 from that

word. The candidate model assumes that known words

with lower edit distances are much more probable than

words with higher edit distances. In order to make the

candidate model tractable, one can restrict those word

candidates to a given dictionary, and if no known can-

didates are found then the original word is returned.

The noisy channel model considers that every can-

didate at the chosen priority has the same probability.

For each candidate word, new sentences are generated

and then scored by the language model. The selection

algorithm keeps the problem computationally tractable

by removing the less probable sentences using a beam-

search algorithm. Finally, the corrected sentence with

the highest likelihood is returned.

The spelling correction system described here,

based on statistic models, only requires a dictionary

(for the candidate model) and a language model P(c)
to work on any language. In our implementation, the

Brazilian Portuguese dictionary (with almost 171,000

words) was extracted from the Google’s Android repos-

itory [31]. The language model was obtained from

the LAPS group [32] at the Federal University of

Pará, a 3-gram model constructed with the SRILM

Algorithm 1 Simple Spell-Checker Algorithm.

1: procedure CORRECTION(sentence)

2: S ← {∅} ⊲ List of sentences

3: P (w|c) = 1, ∀ w, c ⊲ Noisy channel model

4: for w ∈ split(sentence) do ⊲ Split into words

5: for s ∈ S do

6: C ← CANDIDATE MODEL(w)
7: for c ∈ C do

8: insert s+ c into S
9: end for

10: end for

11: score P(s) P(w|c), s ∈ S ⊲ Using the

language model and the noisy channel model

12: S ← most probable sentences in S ⊲ beam

search

13: end for

14: return argmaxP(s) P(w|c), s ∈ S
15: end procedure

16: procedure CANDIDATE MODEL(w) ⊲ Candidates

for word w

17: Dictionary D
18: C ← {∅}
19: if w ∈ D then

20: insert w into C
21: return C
22: end if

23: C ← {edit1(w) ∈ D} ⊲ Edit distance of 1

24: if C 6= {∅} then

25: return C
26: end if

27: C ← {edit2(w) ∈ D} ⊲ Edit distance of 2

28: if C 6= {∅} then

29: return C
30: end if

31: insert w into C
32: return C
33: end procedure

toolkit, trained over the CETENFolha, Spoltech, OGI-

22, WestPoint, LapsStory and LapsNews corpora,

counting almost 1.6 million sentences.

Consider the following sentence: “o mercado fica

de alto risco a curto prazo” (the market becomes high-

risk in a short time). The spell checker algorithm is able

to correct mistakes in different words up to 2 errors as in

“o mercado fica de altu rizcu a curto prazo” where the

word “alto” has one substitution and the word “risco”

has 2 substitutions. However, if the “alto” is changed

to “autu”, the algorithm will prioritize known words of

smaller edit distance from the wrong word, misleading

the word “autu” to “auto’ (self), for instance. Never-

theless, in this last sample, the words “alto” and “autu”

are near-homophones, i.e., they may lead to the same

phonetic transcription.
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3 GRAPHEME-TO-PHONEME CON-

VERTER

The grapheme-to-phoneme (G2P) conversion is a

process that generates a pronunciation for a word, and

has several applications in text-to-speech and speech

recognition. To the authors’ best knowledge, the top

performing methods for G2P conversion are based on

joint-sequence models [33] and sequence-to-sequence

(seq2seq) models [17].

Joint-sequence models divide the G2P problem

into three parts: alignment (between graphemes and

phonemes); training (learning the grapheme-phoneme

conversions); and decoding (finding the most proba-

ble pronunciation given the model). This model type

tries to estimate grapheme-phoneme alignments, which

in practice is not always straightforward [34].

Seq2seq G2P models [35] are based on recurrent

neural networks (RNN) that transform an input se-

quence (e.g. word) into another sequence at the output

(e.g. phonetic transcription), without any input-output

alignment requirement. This transformation is accom-

plished by using an encoder — an RNN that maps the

input sequence into a vector — and a decoder — an-

other RNN that maps the encoded vector into the de-

sired phonetic translation — as illustrated in Fig. 2.

Seq2seq models are easier to implement and have the

advantage of using a continuous space representation

of words, where words in a similar context tend to ap-

pear close to each other in the representational space,

thus enabling neural-based models to better generalize

to unseen words.

Both G2P models described here were custom

developed. The Sequitur tool [36], distributed un-

der the GNU Public License, was selected for the

joint-sequence model, whereas the CMU Sphinx G2P

toolkit [37], distributed under Apache license, was em-

ployed for the seq2seq model. The G2P models were

trained using the LAPS phonetic dictionary containing

over 64,000 words, comprising 38 phones based on the

SAMPA alphabet, separating 10% of this training set

for test and 5% for validation. The Sequitur model

was trained using the default parameters, and the CMU

Sphinx G2P was trained using 2 LSTM layers with 512

hidden units each.

The Sequitur tool and the CMU Sphinx G2P model

reported a WER of 1.79% and 1.40% on their respec-

tive test sets. Most incorrect conversions were quite

plausible and were due to proper or foreign words, like

“jonas” (converted to /Z o n a s/ instead of /Z o∼ n a

s/) and “named” (converted to /n a m e dZ/ instead of

/n a∼ m e dZ/). Hence, both models yielded very sim-

ilar results and presented a very low WER. From now

on, only the results for the CMU Sphinx G2P model are

reported, which achieved the lowest WER.

4 ASR EXPERIMENTS WITH POST-

PROCESSING MODULES

4.1 Spell-checker experiment

In this experiment, we investigate the effect of in-

corporating a spell checker to the deep-learning ASR

system developed in [18] for Brazilian Portuguese.

When using the standard spell checker described in

Section 2, the CER increased from 24.37% to 24.71%,

indicating that the ASR original output included word

errors beyond an edit distance of 2. Unfortunately, it

is not possible to extend the spell-checker algorithm to

comprise distances above 2 as the computational cost

exponentially increases with this threshold.

A possible issue associated to the spell-checker

Alg. 1 is the absolute priority of the candidate model

with lower edit distances, which forces the algorithm

to choose corrections with distance 1, even if there is

a better candidate (with higher probability, as given by

the language model) with edit distance 2. Therefore, an

algorithm modification was proposed to give a chance

for candidates with higher edit distances: instead of

considering P (w|c) = 1 ∀w, c, the new candidate

model re-scores P (w|c) by giving different weights wd

for candidates with distinct edit distances d. The CER

results for the ASR system incorporating such modifi-

cation are depicted in Fig. 3 for w1 = 1 and different

values of 0 ≤ w2 ≤ 1. Unfortunately, giving a chance

to higher edit distances brings no improvement to the

ASR CER performance.

After analyzing some spell-checker outputs, as

shown in Tab. 1, one concludes that the main issue

with this algorithm is that it operates on a word ba-

sis and not at the sentence level. Therefore, the algo-

rithm tries to correct a word instead of searching for

the most probable sentence. In Tab. 1, the network

failed to insert the correct word boundaries in “ideia da

qualidade”, and the spelling correction found that “id-

ede” is more probable to be “idade” (1 edit distance)

than “ideia de”, which would be more compatible with

the whole sentence. When there are only simple miss-

ing/replacements as in “importanes” and “cualidade”,

the algorithm is almost always able to correct the words.

However, on the average, the spell checker was not

able to reduce the CER mostly due to the wrong word

boundaries inserted by the network. This issue can be

mitigated by a smarter decoder that takes into account

the language model, or by training over a domain dis-

tinct from the characters, as considered in the next ex-

periment.

4.2 Grapheme to phoneme experiment

In this experiment, we investigate the ASR perfor-

mance on the phoneme level instead of the character

level assessed by the CER. As said above, we use a

38-phoneme representation for Brazilian Portuguese,

which leads to 39 phoneme-level labels, including the

space, as opposed to the 28-label character space. Then,
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Figure 2: A simple G2P seq2seq model. The encoder transform the word input ‘REDE’ into a vector representa-

tion; the decoder transforms this vector into the phonetic representation ‘/R e dZ i/’.

Table 1: Comparison between transcriptions predicted by the network solely and after using a spelling correction,

and the ground truth.

Transcriptions

Ground Truth e muito importante divulgar a ideia da qualidade para o publico

Predicted e muito importanes de vulga idede cualidade para o podo

Spelling correction e muito importantes de julga idade qualidade para o podo

Figure 3: CER for different values of 0 ≤ w2 ≤ 1 with

w1 = 1.

each utterance is translated to a set of phonemes us-

ing the G2P converter after the network’s transcriptions,

and all performance evaluation regarding the G2P is

done on the phoneme space.

We then consider the standard ASR system fol-

lowed by a G2P converter or by a spell-checker/G2P

combination. Results for the normalized label error

rate (NLER), which takes into consideration the num-

ber of possible labels either in the phoneme or the char-

acter space, are summarized in Tab. 2, which shows

that many of the ASR mistakes are phonetically rea-

sonable, and can be alleviated by a G2P system. In

fact, using the G2P system, one gets a phoneme error

rate of 27.26% in a set of 39 labels, which corresponds

to a NLER in the 28-label space of 27.26 × 28/39 =

19.57%.

When one uses a spell-checker/G2P combination,

the NLER result increases slightly to 20.08%. This can

be explained by the spell-checker algorithm changing

the word pronunciation significantly, since this aspect is

not taken into account for the word selection in its im-

plementation, as indicated in the last line of the Tab. 1.

Table 2: Label error rate (LER) for different post-

processing schemes. The normalized LER indicates the

error rate in the 28-label space.
Algorithm Edit distance Normalized LER # labels

Baseline - 24.37% 28

Spell checker 2 24.71% 28

G2P - 19.57% 39

Spell Checker + G2P 2 20.08% 39

5 CONCLUSIONS

This paper investigated the results of two simple

post-processing techniques applied to a deep-learning

based ASR developed for Brazilian Portuguese. It

was verified that a simple spell-checker algorithm was

not capable of correcting the model mistakes due the

wrong word boundaries inserted by the ASR system.

The errors, however, are phonetically reasonable and

can be alleviated by using a label set in the phonetic

domain. Nevertheless, concatenating the two post-

processing schemes brings no improvements, since the

spell-checker algorithm does not account for correct

words with similar sounds, jeopardizing the G2P al-

gorithm performance. One then concludes that using

a language model to better decode the outputs of an

end-end ASR system is indispensable: lower word-

boundary errors enable the spell-checker algorithm to

perform word-level fine corrections. It was also ob-

served that training over the phonetic space, instead of

the character level, also increases the accuracy of the

system, due to the non-overlapping label set domain.
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