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ABSTRACT

This paper addresses the problem of training deep learning models for automatic speech recognition on
languages with few resources available, such as Brazilian Portuguese, by employing transfer learning
strategies. From a backbone model trained in English, the best fine-tuned network reduces the character
error rate by 9%, outperforming previous related works.

0 INTRODUCTION

Deep neural networks [1] have changed the field
of machine learning. The last couple of years have
shown that deep learning is production-ready, embed-
ded in almost every mobile system, from face detection
to battery-saving adaptive software [2, 3].

Automatic speech recognition (ASR) systems have
also benefited from deep neural networks — from al-
most 30 years of no significant accuracy improvement
to an outstanding 30% improvement in 2012 [4], and
to nearly human accuracy in 2017 [5], currently being
deployed in several voice assistant products like Alexa
and Google Home [6, 7].

However, ASR itself and deep learning-based sys-
tems are data-driven, requiring considerable amounts of

data to produce reasonable results. Since the publica-
tion of TIMIT dataset [8], the offer of open-source En-
glish speech resources has grown, with the advent of the
TED-LIUMv2 [9] (207 hours of speech) and the Lib-
riSpeech [10] (1000 hours of speech) datasets, for ex-
ample. Meanwhile, Baidu has shown [11] results in En-
glish ASR using their private dataset comprising more
than 11,000 hours of speech, showing an improvement
of ~8% over the performance attained when solely us-
ing the LibriSpeech dataset.

High-accuracy ASR systems for some languages
suffer from the lack of annotated speech or public cor-
pora [12]. This work aims to address this issue by
studying and showing how trained ASR systems for
English can be beneficial to construct a more efficient
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system for such languages by applying transfer learn-
ing techniques. From the pre-trained DeepSpeech 2
backbone model [11], this work investigates two setups
for performing the transfer learning to Brazilian Por-
tuguese. The two sets of experiments adapt a backbone
model trained in English to transcribe Brazilian Por-
tuguese speech, one using the same alphabet size and
the other a broader alphabet.

The code developed for this work is open-source
under MIT License and available at: http://
github.com/igormg/aes-lac—-2018.

The rest of the paper is organized as follows. Sec. 1
describes related work in the ASR area and in the trans-
fer learning field. Sec. 2 details the backbone model
based on the Deep Speech 2 network, whereas Sec. 3
depicts transfer knowledge methods in order to train the
backbone model over a small dataset. Sec. 4 details the
English and Brazilian Portuguese datasets used in this
work, whereas Sec. 5 describes a set of experiments on
training an ASR model for Brazilian Portuguese. Fi-
nally, in Sec. 6 conclusions are drawn.

1 RELATED WORK

Recently, deep learning has taken over the ASR
field [13, 14, 5]. Since 2012, deep learning has evolved
from being part of the ASR pipeline to be the entire
model, mostly due to the connectionist temporal classi-
fication [15] and the sequence-to-sequence models [16].
Since then, ASR word error rate has dramatically im-
proved, from 18.4% in 2013 [17] to 9.1% in 2017 [18]
in the commonly used Hub5’00 evaluation [19]. The
standard benchmarks, however, are mainly exclusive
to English or Chinese, and not much effort has been
made in benchmarking other languages, such as Brazil-
ian Portuguese. This lack of effort is primarily due to
the shortage of annotated speech in these languages,
also termed as under-resourced languages. One way to
overcome this reduced amount of available data is using
alternative techniques such as transfer learning [20].

Transfer learning is an approach that uses knowl-
edge learned from one specific task and applies this
knowledge to another different, but related, task. The
transfer learning technique is not a new idea [20]; al-
though it is easy to deploy in computer vision sys-
tems [21], in ASR systems it is more challenging due
to the recurrent models required. Transfer learning con-
sists of two steps: pre-training, where the model' will
be trained for the first task (e.g. classify objects in an
image) with a lot of data; and fine-tuning, where the
model will be adapted to the other task (e.g. detect
different dog breeds), usually over a smaller dataset.
This technique has several advantages in many machine
learning areas, but it becomes more fruitful in the deep
learning field.

Throughout the years, a few papers have investi-
gated the use of transfer learning techniques for under-

Lalso termed as backbone model.
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resourced languages. In [22], the authors investigated
several ways of adapting a model trained in a large
dataset to a small one. Among them, it is worthwhile
to cite the heterogeneous transfer learning, which trains
the same base model in multiple tasks and languages,
and model adaptation. Different from [22], this work
presents recent findings in transfer learning for end-to-
end models. Kunze et al. [23] explored transfer learn-
ing under the optics of GPU constraints from English
to German using the Wav2Letter [24] model, which
is an all-convolutional network. However, the Ger-
man dataset has hundreds of hours of speech, while the
Brazilian Portuguese dataset used in this paper has only
14 hours of speech.

In a previous work [12], a relative shallow model,
with five layers, based solely on long short-term mem-
ories [25], has shown the effectiveness of applying end-
to-end learning to a relatively small dataset. The au-
thors also reported that more layers did not bring any
improvement due to the small dataset. That work is
continued here by increasing the capacity of the net-
work and enabling bigger (and better) models using
transfer learning methods.

2 BACKBONE MODEL

Fig. 1 illustrates the model architecture of this pa-
per: it is based on the DeepSpeech 2 [11] model with
two convolutional (CNN) and five bidirectional recur-
rent (RNN) layers.

Let us define a single utterance as € R7*? and
its respective transcription as y € R® sampled from
an arbitrary dataset. Each utterance x is a time-series
of length T' and dimension D, where each time slice
is a vector ¢, t = 0,...,7 — 1. Here, as in [11],
it is used a normalized power spectrogram calculated
over the audio signal with D frequency bins. The goal
of the model is to convert the audio sequence into the
transcription y.

The first main layers are spatial convolutions, usu-
ally found in image-related tasks. The convolution
layer is used to increase the model capacity with-
out exponentially increasing the number of parameters.
In [11], the authors argued that the convolution in fre-
quency models speakers’ variability better than fully
connected (FC) networks. Moreover, tuning the CNN
parameters, such as strides and kernel sizes, help to re-
lease redundant information found in the spectrogram
as well as reducing the number of outputs to be fed into
the subsequent, more expansive, layers. Tab. 1 shows
the CNN parameters used in this work, which yield the
best performance, according to [11]. Each convolution
layer is followed by a batch normalization layer [26]
and a clipped ReLU non-linearity (min(ReLU(z), 20)).
This setup reduces the input dimension at least 8 times”.

After two convolutions layers, the output hi is fed
to a stack of 5 bidirectional recurrent neural networks.

2z /8 — 19.
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Hello, world!

-

Bidirectional 4+ Sequence-wise
BatchNorm

Figure 1: Deep Speech 2 like model. It consists of 2 convolutional layers, 5 GRU layers, and 1 FC with interleaved

Batch Norm layers, totalizing over 30M parameters.

Table 1: Convolutional layers in the Deep Speech 2
model.

# channels  kernel stride  padding # parameters

Conv 1 32 (41,11 (2,2) (0,10) 14,464
Conv 2 32 21,11 (2,1)  (0,0) 236,576
251,040

Different from [11], this work uses gated recurrent units
(GRU) instead of Elman’s RNN. GRU is a simpli-
fied version of long short-term memories (LSTM) [25]
where the forget and input gates are fused. For a unidi-
rectional GRU layer /, at each timestep ¢, the activation
vector a} € R?# is computed as follows

aé = W;I;lyhlflhi_l + WZlﬁhlhi_l + bl, nH

where h? = x;. We then divide a! into two vectors
a; = [a},, a},]", foral, € R¥, and compute the

reset gate 7t = o(a},) € R and the update gate

ul = o(al,) € R, where o is the sigmoid function
applied element-wise. Finally, we compute the next

hidden state h! as

~1
h, = tanh [W; Shi W (ro ) ¢ b,;]

(2)

~1
hy=(1—u) Oh,_ +uoh,, 3)
where W, -1 € RP>H W, - e RV b e RE

are learnable parameters of GRU as well, and © is the
element-wise product operator. A sequence-wise batch
normalization [27] is also applied to the input-hidden
connections of each recurrent layer for a faster conver-
gence, i.e.,

a; =BN(W i pohi )+ Wi pihi  +b. @)

In the bidirectional setting, there are two unidirec-
tional GRUs for each layer, one proceeding forward and
the other backward in time, which generate outputs h !
and Zi Then, the two outputs are summed into a sin-
gle output hi = TIZ + %é to be fed into next layer.

After the bidirectional recurrent layers, one fully
connected layer is employed to generate the unnormal-
ized scores over the label set

hl = winF=! 4 bl 5)

Finally, we can calculate the probability distributions
over the labels with a softmax layer

exp(hy)

p(li|z) S 1ThRE (©)

Ateach timestep ¢, the softmax layer predicts a label
p(lt|x), where [, is either a label from a set compris-
ing the character set and the blank token. Finally, the
predicted transcription is decoded from the sequences
given according to the probability distributions. The
loss function adopted is the connectionist temporal clas-
sification (CTC) [28], which accounts for each possible
sequence of labels that can be translated into the same
transcription, not being necessary a frame-level annota-
tion. Given the input-output pair (x, y) and the network
parameters 0, the loss L(x, y; @) and its gradient with
respect to the network parameters Vg L(x, y; ) can be
calculated over the batches. The gradient is then back-
propagated through time in order to update the network
parameters.

3 TRANSFERRING KNOWLEDGE

Training the Deep Speech 2 model with more than
30 million parameters with a few hours of Brazilian
Portuguese speech is a challenge. This section inves-
tigates the transfer learning method to enable training
bigger and deeper models with small datasets.

3.1 Transfer learning

One of the main challenges to deep learning practi-
tioners is that most of the algorithms are data-driven, re-
quiring a considerable amount of annotated data to gen-
erate reasonable results, which can be time-consuming
and cven prohibitively expensive. Profiting from the
breakthrough of deep learning in a large number of
small datasets is mainly possible due to the transfer
learning approach.

Neural networks have greatly benefited from trans-
fer learning duc to the intrinsic characteristic of
layered-pattern learning. The first layers usually learn
more abstract and generic concepts (e.g., lines and cir-
cles in an image) while deeper layers usually learn
more task-specific patterns (e.g., dogs or human faces).
These abstract layers act as generic feature extractors,
which may be used in other tasks that have not been
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trained on. Successful approaches have been found
in the field of computer vision [21], due to the open-
available ImageNet dataset, a broad set of more than
one million of images, organized in 1000 classes. Deep
models trained with this dataset learn generic filters and
features that can be used to adapt the model to a differ-
ent, but related, task. In natural language processing,
transfer learning has also been widely applied in the
word embedding field [29].

Ordinarily, models with pre-trained weights have
several favorable characteristics, leading to better gen-
eralization [20], better initial performances, steeper
slopes, and higher asymptotes [30] than models initial-
ized with random weights, as depicted in Fig. 2. Two
factors are essential when using the transfer learning
method: target dataset size and similarity between the
datasets.

higher slope higher asymptote
o | | e
[$] G
c o
@
£ .
sl 7 e with transfer
‘5 — without transfer
(o8 higher start

training

Figure 2: Transfer-learned models have better initial
performance, steeper learning curve, and higher final
accuracy in training than models without transfer learn-
ing. Adapted from [30].

Small and similar. Usually, it has a higher chance
to overfit, then the best option is to freeze the first layers
and only retrain the last ones.

Large and similar. Less chance to overfit, hence
the entire model can be retrained.

Small and different. Deeper layers have less sim-
ilarity with the new task. Thus, it is reasonable to re-
move the final layers, which are more task-specific for
the original problem.

Large and different. We can afford training from
scratch, but it has been shown that training a model
from a pre-trained one is beneficial.

Nevertheless, transfer learning methods have a
model constraint. In order to use a pre-trained model,
machine learning practitioners must comply with the
model topology to avoid a thorough change into the
original model; otherwise, the co-dependency between
layers will be lost and the pre-trained weights will not
be worth much for transfer learning. Another common
sense is that the learning rate should be usually lower in
pre-trained models: since weights are better initialized,
they are not expected to be modified so quickly during
training.
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4 DATASETS

This section describes the two datasets used in this
work: a large one in English and frecly available, and a
small one, in Brazilian Portuguese and partially freely
available.

4.1 LibriSpeech

The LibriSpeech [10] is a speech corpus derived
from reading audiobooks from the LibriVox project,
totalizing almost 1000 hours of reading speech at 16
kHz, one of the most significant public available En-
glish dataset. This dataset is composed of two test sets
called test-clean and test-other which have
the lowest and the highest word error rate (WER), re-
spectively, evaluated by the authors in a state-of-the-art
model at that time. Due to its massive amount of data,
the LibriSpeech corpus is a perfect candidate to pre-
train the Deep Speech 2 model.

4.2 Brazilian Portuguese speech dataset

The Brazilian Portuguese speech dataset is an en-
semble of three publicly available datasets and one
paid [12]. It contains almost 14 hours of non-
conversational speech, totalizing 425 different speakers
and more than 12,000 utterances sampled at 16 kHz in
a non-controlled environment.

5 EXPERIMENTS

In this section, we investigate two approaches to
perform the transfer learning, as previously described
in Sec. 3.

5.1 Backbone model pre-training

In all experiments, we have trained a backbone
model using the LibriSpeech dataset. Table 2 sum-
marizes the backbone model architecture and training
hyperparameters. The network input is the normalized
spectrogram, as described in Sec. 2, calculated using
a Hamming window with 320 samples and a hop size
of 160 samples, thus D = 161. Each recurrent layer
has H = 800 hidden units and the alphabet contains
C = 29 labels (A...Z, apostrophe, space, and blank la-
bel). Training was carried out using the stochastic gra-
dient descent method with momentum, using a learning
rate of 3e-4, a momentum of 0.9, an annealing rate of
0.9091, and a gradient norm clipping of 400 for over 15
epochs with a batch size of 10. In the first epoch, we
use a curriculum learning called SortaGrad [11], which
consists in sorting the utterances by its length, to accel-
erate training. After the first epoch, the batches are ran-
domly organized. The predicted sequence is decoded
using the greedy search [28]. Tab. 3 shows the results of
the backbone model, which is close to the values found
in the literature, without a proper language model for
decoding and extra data. The Paddle Paddle [31] imple-
mentation differs from others by adopting larger recur-
rent layers (with 2048 hidden units each) and a different
activation function.
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Table 2: Deep Speech 2 backbone model: architecture and hyperparameters. View operation is a reshape over the

A NEW ASR FOR PT-BR BASED ON DNN AND TRANSFER LEARNING

inputs.
Operation Kernel size Stride  Feature maps Padding Nonlinearity
Network - Input Bx1x161 xT
Convolution 41 x 11 2x2 32 0x 10  BN-clippedReLU
Convolution 21 x 11 2x1 32 0x0 BN-clippedReLu
View B x 32 x 21 X Toy — Tow X B x 3221
x5 BatchRNN  fhidden size: 800
BN
View 1T'x B x 800 — B x T x 800
FC  output size: B x T x 29 softmax + CTC
BatchRNN Module
Sequence-wise BN
Bidirectional GRU tanh
Sequence-wise BN Module t,b.d
View ¢txbxd—txbxd
BN
View (xbxd—1txbxd
Preprocessing  Normalized linear spectrogram (window size = 320, hop size = 160)
Optimizer SGD with momentum (Ir= 3¢ — 4, momentum= 0.9), SortaGrad enabled
Max gradient norm 400

Learning rate annealing  0.9091
Batchsize 10
Epochs 15

Decoding  Greedy search decoder

Table 3: Backbone model word error rate (WER) com-
pared with Sean Naren [32] and Paddle Paddle [31] im-

plementations.
Ours Sean Naren Paddle Paddle
test-clean 11.66% 11.27% 6.85%
test-other  30.70% 30.74% 21.18%

5.2 Fine-tuning with the same label set

The first set of experiments investigates the trans-
fer learning method, which uses the same character set
as the pre-trained model. Tab. 4 summarizes the re-
sults and Fig 3 shows the character error rate over the
epochs. Freezing the model and training only the RNNs
and FC layers did not bring any improvement over the
model trained from scratch (with the same setup as the
backbone model) with the Brazilian Portuguese dataset.
Fine-tuning the entire model shows an advantage, with
the character error rate (CER) dropping from 22.19%
to 16.17%, by far surpassing the previous work [12], as
depicted in Tab. 5, where the fine-tuned model predicts
better the word boundaries than the model trained from
scratch. Due to the differences between the two lan-
guages, only training the recurrent and FC layers are
not enough, thus fine-tuning the entire model makes
the network adapt better to Brazilian Portuguese. Also,
fine-tuning with lower learning rate (3e-5) has worse
results than training with the backbone learning rate,
which indicates that the pre-trained weights generalize
better but the two datasets are more distinct than ini-
tially thought, requiring a higher learning rate.

Table 4: Transfer learning into the same label set.
[12] scratch  freeze fine-tuning
CER | 25.13% | 22.19% 30.80%  16.17%

0.6
—— Scratch
05 Freeze
Fine-tune, lr= 3e—4
Fine-tune, Ir=3e¢—5
= (.4 d
&= 0.4
O
0.2
0 20 40 60 80 100

Epochs

Figure 3: Character error rate over time in the validation
set. A lower learning rate did not improve the results.

5.3 Fine-tuning with a broader label set

The second set of experiments, in contrast to the
first one, performs the transfer learning using a broader
set of characters, including the Brazilian Portuguese ac-
cents — expanding the number of characters C' from
29 to 43. Since the number of characters is different
between the backbone and fine-tuned model, the last
fully connected pre-trained weights may be lost. These
two sets, however, have some intersection (both sets
have A...Z characters). One could either not take into
account this intersection and initialize all FC weights
from a random distribution, or initialize the subset of
FC weights related to the same characters. Tab. 5 shows
that the network was able to correctly predict the Brazil-
ian Portuguese accents and Tab. 6 presents the results
for both types of initialization. It is clear that seizing
the better weights from the backbone model is advan-
tageous, reducing the CER by 5.05% if the last weights
are randomly initialized, and by 5.06% if the subset
FC layer is not randomly initialized; this indicates that
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Table 5: Comparison between original transcription and the ones predicted by different models and label sets.

model accent? transcription
reference - segundo ele a policia ndo iria ceder a exigéncias
scratch No segundo elha a posnicie nao iria cebe aesxigencia
fine-tuning No segundo elhe a policia nao eria cede a exigencias

non-random FC weights Yes

segundo ele apolicia ndo eria cde a eigéncias

the phonemes related to each character are different be-
tween the English and Brazilian Portuguese languages,
and the better initialization of some weights in the last
layer brings no visible improvements.

Table 6: Transfer learning into a broader label set.
scratch  random FC weights non-random FC weights
CER  22.78% 17.73% 17.72%

6 CONCLUSIONS

In this work, we have discussed transfer knowledge
techniques applied to the ASR field for under-resourced
languages as Brazilian Portuguese. From a pre-trained
Deep Speech 2 backbone model on LibriSpeech, we
have conducted several experiments on transfer learn-
ing from English to Brazilian Portuguese, showing an
improvement of 8.96% over the previous work and a
character error rate of 17.72% using a broader label set
covering all Portuguese Brazilian accents. These results
show that the end-to-end models for ASR can signifi-
cantly benefit from transfer knowledge methods.
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