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Abstract— Pixel-level ground truth masks for object detection
databases are extremely useful in the context of machine learning,
specially for convolutional neural network applications. However,
the manual labeling process of such data demands a lot of
effort and time, especially in videos, in which the labeling needs
to be performed in each frame. Therefore, only bounding box
annotations, that are much faster to perform, are present in most
databases. In this work we propose a semi-automated approach to
transform bounding-box annotations into silhouette annotations
with a reduced processing time. We compute features of a siamese
network in the region inside a bounding box and obtain the
probability of a pixel to belong to the foreground, which is then
refined by a post-processing step. We employ our methodology
to the VDAO dataset, creating a new annotation that contains
the silhouette of the objects. We estimate that our method results
in a reduction of the annotation time by 90% in average, while
providing an accurate silhouette for the objects.

Keywords— siamese networks; anomaly detection; video anno-
tation; deep learning.

I. INTRODUCTION

An anomaly may be defined as a non-conforming pattern
that varies depending on the scenario and circumstances.
Automatic anomaly detection systems can be found in many
applications including road inspection, waste sorting, supervi-
sion of public areas such as airports, train stations, shopping
centers, etc [1]. In the computer vision context, objects added
or removed from a video scene can be considered anomalies.
However, considering the presence of an object as an anomaly
depends on the context and is an important definition for
any supervision system. Objects like guns and abandoned
luggage, for instance, could be considered anomalies in public
crowded places [2], [3], [4]. In industrial sites, such as offshore
platforms, objects left in areas that may result in accidents or
items capable of producing flames are critical anomalies that
could lead to serious consequences if not timely detected [5].
Depending on the application, an immense amount of object
classes could be classified as anomalies, preventing popular
object detection systems to be used in such cases [6]. In order
to overcome this issue, some anomaly detection systems are
designed to compare a given input video to another reference
video, representing normal environmental conditions [7].

Surveillance systems usually monitor large areas with multi-
ple static or PTZ (Pan-Tilt-Zoom) cameras. Static cameras are
limited to a much narrower view of the scene, while PTZ cam-
eras, by zooming and rotating, can cover a wider area. The cost
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of expanding the monitored area increases if more cameras
need to be applied [8], [9], [10]. An alternative for that is the
use of moving cameras, which can cover larger areas and may
lead to reduced installation cost. The drawback of applying
moving cameras to detect anomalous objects or situations is
the increasing complexity of the problem. Occlusions, camera
jitters, shadows, and light variations limit the success of the
same techniques applied in static cameras [11], [12], [13].
Works such as [13], [14], [15] address the anomaly detection
problem with a moving camera by comparing a target video,
possibly containing the undesired anomaly, to a reference
video representing the normal conditions. After aligning both
reference and target videos, different similarity measurements
are used to detect any stray objects in the scenes.

The anomaly detection problem with a moving camera
is well represented in the Video Database of Abandoned
Objects (VDAO) [5]. The VDAO is a challenging dataset
covering anomaly detection in large industrial environments
with many adversities found in surveillance videos that hinder
the automatic detection of anomalies. This dataset contains
reference and target videos recorded in a cluttered environment
with illumination changes. The target videos contain objects
distributed in the scenario and, as the camera moves, the
objects can be partially or totally occluded in some video
scenes. The objects are annotated by their bounding boxes
and due to the occlusions and shadows, the manual silhouette
annotation is an even more challenging task than it usually is.

In applications where objects are partially occluded or have
irregular shapes, however, the bounding box annotations do
not represent the objects precisely. In this context, this paper
proposes an annotation method to transform bounding box
annotations into silhouette annotations when the target and
reference videos are available. Our annotation method was
applied in the VDAO due to its challenging real-life features
but can be easily adapted to other databases. The main idea
behind the proposed method is the use of a siamese neural
network to extract deep features from both videos and compare
the results at the pixel level to produce the object silhouette.

This paper is organized as follows: Section II briefly de-
scribes the VDAO database which is used as a case study for
the proposed annotation method. Section III proposes a feature
extraction method using siamese networks that provides a
candidate for the silhouette segmentation, which is further
refined using the algorithm detailed in Section IV. Section V
describes the obtained silhouette-level VDAO database, and
Section VI reports the final conclusions.
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II. THE VDAO DATABASE

The so-called VDAO database [5] is a collection of 77
videos recorded by a camera mounted on a robot moving in a
back-and-forth trajectory along an industrial plant. The videos
have resolution of 1280× 720 pixels at 24 frames per second,
showing a total of 24 objects placed in the cluttered scenario,
simulating objects that do not belong to the environment in
expected conditions. Similarly to other databases, reference
and target videos are provided. The reference videos are those
which do not contain any anomaly, in this case, represented by
the abandoned objects, and the target videos contain a single
or multiple abandoned objects. In this work, only the single-
object videos were considered, and the objects presented in
these videos belong to one of the following classes: brown box,
camera box, dark-blue box, pink bottle, shoe, towel, white jar,
black coat, and black backpack. Many realistic constrains, such
as occlusion, light changes, and jitters, hinder the detection of
the objects in the target videos, making the VDAO a very
challenging dataset for the anomaly detection task.

Besides the 77 VDAO videos, an extra database containing
short videos to be used as benchmark is also available. Such
videos are 200-frame long and are part of the subset referred
to as VDAO-200. This auxiliary testing database, available
at [16], contains 59 single-object videos with different objects
in different positions under two different illumination condi-
tions. All 59 videos of the VDAO-200 testing database are
short-duration patches of the single-object VDAO videos.

The VDAO also provides annotation files containing the
position of the abandoned objects for each frame. Current an-
notations, however, only include the coordinates of bounding
boxes encompassing the objects presented in the target videos,
as seen in Fig. 1, as manual annotation at the silhouette level
was considered unpractical at the time. In fact, even though
popular silhouette-annotation tools, such as LabelMe [17] and
COCO Annotator [18], could facilitate the process of silhou-
ette annotation, one must still manually sketch the object shape
at each video frame, making the task quite time consuming.
Due to the industrial cluttered scenario and the variations
of illumination present in the VDAO videos, the objects are
constantly covered with shadows or are partially occluded,
further complicating the annotation process.

(a) reference frame (b) target frame

Fig. 1: Example of a reference frame (a) and its aligned target
frame (b). A red bounding box highlights a white jar in the
target frame that does not appear in the reference frame.

III. VIDEO ANALYSIS

An efficient comparison of the reference and target videos
requires a pre-alignment of these videos in order to remove
spatio-temporal noise. Given a pair of reference and target

videos, the alignment process searches for a reference frame
Ri that best matches a given target frame Tj according to
their Euclidean distance. For that, we limit the search to a
neighborhood of only 11 reference frames centered at the best-
match frame for the previous Tj−1 target frame. The alignment
reduces the occurrence of artifacts outside the object area,
improving the efficiency of the silhouette annotation method.

By using the initial layers of a pre-trained deep convolu-
tional neural network (CNN) as feature extractor, we propose
to generate rich high-dimensional descriptors for fine regions
of the frame space. Comparing pre-aligned reference and target
descriptors, we can use a simple metric to detect the pixelwise
frame regions that contain anomalies, as represented in Fig. 2.

Ri

Tj

CNN

CNN

‖x− y‖ Di

Fig. 2: Truncated twin ResNet-50 CNNs as feature transform-
ers for comparing pre-aligned reference (Ri) and target (Tj)
frames in order to detect video differences at the pixel level.

Let F : R3×1280×720 → R256×320×180 be the mapping from
RGB space to feature space provided by the layer ‘conv2_3’
of a ResNet-50 [19] trained on the ILSVRC 2015 dataset, and
the transformed reference and target features denoted by R̃i =
F (Ri) and T̃i = F (Tj), respectively. A simple local estimate
of the discrepancy between reference and target frames can
be obtained through a Euclidean mapping for each descriptor
such that

[Di]xy =

√∑
c

([R̃i]cxy − [T̃j ]cxy)
2
. (1)

An example of a generated difference map for a given frame
pair is depicted in Fig. 3, where one may notice how the target-
frame stray object (highlighted with a bounding box) yields
pixels with a high difference value. Outside the bounding box,
where the object is not present, one mainly finds very low dif-
ference values and some scattered high difference values that
may be removed by additional image-processing techniques.
Therefore, we can further refine the difference mapping by
incorporating the bounding-box information and ignoring the
regions outside the box. Motivated by that observation, we
developed a semi-automated technique using morphological
operations to obtain the silhouettes of the object from the
difference mapping and provide a pixelwise annotation of
the objects on a larger dataset, which is fully described in
Section IV.

In order to further improve the separation between object
and background and make the annotation process more con-
sistent, we concatenate the difference maps inside the boxes
for all frames in a video and normalize the difference values
using the threshold value τD and sample standard deviation σD
which were obtained from the Otsu method [20]. This results
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in a normalized dynamic-range transformation such that

[D̃i]xy = f

(
[Di]xy − τD

σD

)
, (2)

where the values D̃i represent the probability of a pixel to be
considered an anomaly and f(x) denotes the logistic function

f(x) =
1

1 + e−x
. (3)

IV. PROPOSED SILHOUETTE-ANNOTATION ALGORITHM

Using the framework defined in Section III, we obtain
for each pair of reference and target frames a normalized
difference map indicating the probability of a pixel in the
bounding box to belong or not to an abandoned object.
However, when using a simple binarization procedure to create
a mask of foreground and background pixels, one gets a large
number of misclassified pixels, as shown in Figs. 4a and 4b.

Analyzing the misclassification cases obtained after the
binarization of the difference map, one can see that two main
issues arise from this procedure: small regions of false-positive
pixels appear outside the object and false-negative regions
form small holes inside the object. Such artifacts can be
removed by the opening and closing morphological operations
[21], respectively, if one chooses the correct structuring ele-
ment, as illustrated in Figs. 4c and 4d.

In addition, when the object is too similar to the background,
as for instance in shadowed regions, the detection algorithm
is not able to properly identify all parts of the object as fore-
ground. To cope with this issue, we consider that a pixel may
be classified into three different groups: foreground, where the

(a) target frame (b) raw difference mapping

Fig. 3: Example of a target frame (a) with an abandoned object
(identified by its red bounding box) and mapped difference
frame (b), where the object silhouette clearly stands out.

(a) (b) (c) (d) (e) (f)

Fig. 4: Steps in the silhouette annotation of a shoe through
morphology operations. In the proposed scheme, the difference
map (a) is binarized (b) and then subjected to successive
stages of opening (c), closing (d), erosion and dilation (e). In
these figures, the white area represents the obtained silhouette
and the gray area represents the undefined zone. The object
extracted using the final silhouette can be seen in (f).

pixel certainly belongs to the abandoned object; background,
where the pixel certainly does not belong to the abandoned
object; and an undefined zone, where one is not sure to which
class the pixel belongs. The undefined zone is formed by
applying an erosion [21] on the foreground region followed
by a dilation [21] on the background region, thus creating
a transition region between foreground and background, as
represented by the gray color in Fig. 4e. Based on all these
aspects, we then propose the following post-processing steps:
Binarization: Comparison of D̃i in Eq. (2) against a threshold
value t to form a binary classification mask. In this process,
the threshold t is such that false-positive pixels appear far
enough from the object and only in isolated cases in order to
be removed by subsequent steps (Fig. 4b);
Opening: This operation is performed with a circular structur-
ing element of diameter o to remove the maximum of false-
positive regions left by the binarization step (Fig. 4c) without
affecting the true-positive regions;
Closing: This operation employs a circular structuring element
of diameter c to fill in the false-negative regions within the
object (Fig. 4d);
Erosion and Dilation: These combined operations use a
circular structuring element of diameter e to create a border
around the object which may be considered as a neutral
unidentified region (Fig. 4e).

One should note, however, that this procedure requires the
proper configuration of the hyperparameters (t, o, c, e) to con-
trol the binarization and the morphological operations. These
parameters are tuned for sets of contiguous frames, referred
to as segments. For the first frame of a segment containing an
abandoned object, we perform a manual search for the optimal
parameters to annotate the frame, if possible narrowing the
search around the parameters used in another segment. For
the subsequent frames, one can reduce the annotation time by
using information obtained during the annotation of previous
annotated frames.

The whole annotation procedure goes on like this: First,
we compute a transformation between the bounding boxes
of the previous (annotated) frame and the current frame,
using it to generate the annotation of the current frame by
displacing the background, foreground, and undefined regions
of the previous frame. If no false detection of background and
foreground is observed, we use the displaced annotation of
the previous frame as the annotation for the current frame.
If a false detection is observed, we determine the difference
map within the bounding box of the current frame and apply
the post-processing procedure above with current (t, o, c, e)
values. If it is not possible to correct the false detection, we
assume that the video excerpt is too long and divide it into
two smaller segments, each one requiring a different set of
parameter values, which are then adjusted.

In this scheme, the videos are initially segmented so that the
segments can be categorized in two types, Type A or Type B,
depending whether a given object is entirely or partially
visible in its frames, respectively (note that a partially visible
object may be entering, leaving, or being partially occluded
in a scene). During the annotation process, the segments are
recursively divided in two smaller segments until all frames
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containing objects are annotated.
On Type A segments, the object shape does not vary

drastically from frame to frame and the morphological op-
erations tend to provide similar results on consecutive frames,
which can then be easily annotated. On Type B segments,
however, the morphological parameters usually require some
adjustments in a frame by frame basis.

V. SILHOUETTE-ANNOTATION RESULTS

We employ the proposed annotation method to obtain the
object silhouettes in all 59 single-object VDAO videos and,
consequently, in the VDAO-200 as well. The new database,
henceforth called VDAO-AS, describes each object silhouette
by a sequence of 1280×720 images, with each pixel indicating
the presence of an object with a white color, the absence of an
object with a black color, and the undefined zone is represented
by the gray color.

In order to assist the annotation procedure, we developed
a tool that implements the morphological post-processing
steps described in Section IV and allows one to control its
parameters and visualize the results, as depicted in Fig.5. The
graphical user interface for the silhouette annotation was de-
veloped in Python using the PyQt library and OpenCV. Among
its capabilities, the interface allows the user to create, split,
or concatenate segments when the sequence, the difference
map, and the bounding-box annotation are provided. It is also
possible to set the morphological hyperparameters (t, o, c, e),
for each video segment. For all the frames within a segment,
the annotation tool initializes the silhouette as a translated
version of the silhouette in the first frame of the segment.

Fig. 5: Silhouette annotation tool used to create the pixel-level
VDAO database. For a better visualization, the undefined zone
is here shown in red and the annotated foreground in blue.

A. Silhouette VDAO Database

Examples of the VDAO-AS database with the silhouette
of the foreground and undefined zones are shown in Fig. 6.
Despite the existence of the undefined zone, one can see that
the annotated foreground (blue line) is much more adapted to
the actual shape of the abandoned object when compared to
a bounding box. The undefined zone (red region) is supposed
to be discarded when using the database to train supervised
methods. This version of the database along with the new
ground truth and the annotation tool is available at [22].

(a) (b) (c)

(d) (e)

Fig. 6: Examples of objects with their annotated silhouette
(blue line) and undefined zone (red line): (a) shoe; (b) white
jar; (c) pink bottle; (d) camera box; (e) dark-blue box.

Some hyperparameter statistics for the entire the annotation
process are given in Table I, indicating the overall range and
some insight into the sensitivity of each algorithm parameter.

When creating the VDAO-AS database, the amount of time
required to annotate each video is related to the number of
actions performed to tune the hyperparameters, which depends
on the the quality of the difference map. If the difference map
is able to differentiate the object from the background (high
values inside and low values outside the object boundaries),
the annotation process tends to be faster by using the same
set of hyperparameters for a long video segment. If this is not
the case, the hyperparameters must be adjusted more often,
increasing the annotation time, and larger undefined zones may
be necessary. In Table II it is possible to see the proportion
of annotated frames which required the hyperparameters to
be manually adjusted, and the ones in which the user simply
verifies if the previous silhouette fits the object in the current
frame. We estimate that a manual annotation for all frames
should take over 10 h per video, whereas the proposed method
reduced this time to an average of 1 h per video.

VI. CONCLUSION

We consider the use of CNN features to distinguish between
foreground (anomaly related) and background pixels in a
video-surveillance system. The proposed method can be used
to refine a bounding-box annotation process into a silhouette
one for any database which includes reference (anomaly free)
and target videos, such as the VDAO dataset considered
here. As a by-product of this work, we also developed an
annotation tool with a graphical user interface to guide the
annotation procedure. With such a tool, the annotation of each
VDAO video took in average about 1 h, which represents a
reduction of the annotation time by 90% when compared to
the manual annotation. Overall, the resulting silhoutte-level
VDAO (VDAO-AS) contains 130,408 frames with a frame-
by-frame silhouette annotation using the proposed method.
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TABELA I: Statistics on the annotated hyperparameter values for each object type: diameter of the circular structuring element
in pixels for the morphological operations and binarization threshold value.

Object Opening Closing Erosion/Dilation Threshold
Max. Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean

shoe 70 1 11.29 157 1 49.54 99 1 29.83 208 32 93.76
dark-blue box 69 1 9.32 190 1 44.14 173 1 27.35 173 5 90.37
camera box 69 1 15.31 197 1 55.35 113 1 27.47 195 6 82.04
white jar 36 1 7.41 199 1 26.46 61 1 18.57 201 8 81.22
brown box 99 1 8.10 182 1 37.17 99 1 29.55 251 6 92.10
pink bottle 50 1 12.63 199 1 20.92 79 1 24.47 173 35 103.85
towel 99 1 12.56 194 1 35.59 99 1 27.83 209 5 82.92
black coat 84 1 14.25 199 1 45.86 136 1 54.33 162 10 73.51
black backpack 151 1 14.87 199 1 26.46 199 1 51.30 138 7 94.66

TABELA II: Number of frames annotated with manual tuning
of hyperparameters (labelled as “manual”) and using previous
frame silhouette (labelled as previous sillouette).

Object Manual Previous sillouette Total
shoe 1019 (8.86%) 10479 (91.14%) 11498

darkBlueBox 441 (3.81%) 11144 (96.19%) 11585
cameraBox 660 (5.65%) 11022 (94.35%) 11682

whiteJar 484 (4.58%) 10086 (95.42%) 10570
brownBox 658 (4.61%) 13628 (95.39%) 14286
pinkBottle 482 (4.63%) 9923 (95.37%) 10405

toalha 1132 (6.34%) 16724 (93.66%) 17856
blackCoat 1078 (5.27%) 19363 (94.73%) 20441

blackBackpack 842 (3.81%) 21243 (96.19%) 22085
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