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ABSTRACT

In the last years, adaptive infinite-duration impulse re-
sponse filters (IIR) have been studied as a possible al-
ternative to adaptive finite-duration impulse response
(FIR) filters. Some of the best known approaches for
adaptive IIR filtering include the output error (OE), the
equation error (EE), and the Steiglitz-McBride (SM) al-
gorithms. In this paper, a homotopy continuation map-
ping (HCM) of the SM adaptive algorithm is proposed by
using the OF and EE algorithms as basic schemes. The
utilization of the homotopy factor results into a simple
analysis of the general convergence behavior of the SM
algorithm, allowing a direct comparison with the conver-
gence properties of the OE and EE algorithms. Numer-
ical examples are included in order to demonstrate the
usefulness of the proposed mapping.

INTRODUCTION

In the last years, adaptive infinite-duration impulse re-
sponse (IIR) filters have been studied as a possible al-
ternative to adaptive finite-duration impulse response
(FIR) filters. The main advantage of adaptive IIR fil-
ters when compared to adaptive FIR filters is their ef-
ficiency with respect to the number of coefficients when
modeling systems with high selectivity poles. However,
research has shown that adaptive IIR filters can present
some serious implementation and convergence problems,
such as: Possible existence of suboptimal (biased or local
minimum) solutions, requirement of stability monitoring
etc. To overcome these problems several techniques ap-
plicable to adaptive IIR filtering have been developed
[1,2].

The two most commonly known approaches for adaptive
HR filtering are the output error (OE) and the equa-
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tion error (EE) algorithms [1,2]. Probably the best fea-
ture of the OE and EE schemes is the fact that each
algorithm can be associated to a performance surface
[3]. This property allows a better understanding of the
general convergence characteristics of these two adaptive
techniques. The mean square output error (MSOE) per-
formance surface associated to the OF algorithm has an
unbiased global minimum, but also may present subop-
timal local minima. At the same time, the EE is a sim-
ple adaptive algorithm that presents a unimodal mean
square equation error (MSEE) performance surface and
good stability characteristics. However, the EE algo-
rithm may result in a biased solution in cases of presence
of noise in the desired output signal.

Another algorithm for adaptive IIR filtering is the on-
line version of the well known Steiglitz-McBride (SM)
method for recursive system identification. In [4], Fan
and Jenkins introduced a complete family of on-line ver-
sions of the SM method. Although the members of this
group may present different transient properties, they
are asymptotically equivalent in their steady-state char-
acteristics. In fact this family of algorithms has con-
vergence properties somewhere in between the OE and
EE convergence behaviors. Basically, it has been proved
in [5] that the SM family can correctly model an un-
known system in cases of sufficient order identification,
when the perturbation noise in the desired output signal
is a white noise or nonexistent. In cases of insufficient
modeling, the general behavior of the SM adaptive al-
gorithms is somewhat unknown [6,7]. In those cases, it
is known that this class of algorithms does not minimise
the MSOE, although in some cases the final solution can
be extremely close to the OF solutions (8].

In this paper, a homotopy continuation mapping (HCM)
[9,10] of the SM adaptive algorithm is proposed by us-
ing the OF and EE algorithms as basic schemes. The
utilization of the homotopy factor 7 results into a sim-



ple analysis of the general convergence behavior of the
SM adaptive algorithm, allowing a direct comparison
with the convergence properties of the OE and EE al-
gorithms. This paper is organized as follows: In the
next section, we introduce the OE, EE, and SM algo-
rithms showing their respective characteristic equations.
Later, the homotopy continuation mapping for the SM
algorithm is presented. The following section, contains
some system identification simulations showing how the
proposed mapping can be used to analyse and interpret
the convergence behavior of the SM algorithm.

PROBLEM STATEMENT

The general diagram of an adaptive IIR filter is shown
in Figure 1. In this figure, z(n) is the input signal, y(n)
is the desired output signal, §(n) is the adaptive output
signal, and epg(n) is the output error signal.
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Figure 1: Block Diagram of a General Adaptive Filter

In a system identification problem, the desired output
signal is assumed to be given by

M)

where v(n) is the perturbation noise and yo(n) is the
output of an unknown system or plant described by the
transfer function
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y(n) = yo(n) + v(n)

H(q) (2

where ¢~! represents the unit delay operator, B(g~!)
and A(g~!) are coprime polynomials, and the zeros of
2™« A(z™!) are assumed to be inside the unit circle. Sim-
ilarly, §(n) is the output signal of the adaptive IIR filter
characterized by

B(¢~!,n)

/i(q—l,n)
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(3)
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By defining the adaptive filter coefficient vector as

8(n) = [a1(n) .2, () bo(m) . Baum)] (@)

the basic form of a general adaptive algorithm can be
written as

B(n +1) = B(n) + p(n)e(n)b(n) (5)

where p(n) is a gain factor that can be a matrix or a
scalar, e(n) is an estimation error, and ¢(n) is the re-
gressor or information vector associated to the adaptive
algorithm. For the OE, EE, and SM adaptive algorithms,
we have [1,2,4]:

i) Output Error (OE) Algorithm:

d(n) = [¢ (n=1)...¢9 (n—ho) 2/ (n) ... 2f (n—1p)]

e(n) = eop(n) = y(n) — 4(n) (6)
ii) Equation Error (EE) Algorithm:

é(n) = [y(n—1).. Y(n—na) z(n).. z(n—ap))T

e(n) = epp(n) = A(g™",n)eor(n) (7

ii1) Steiglitz-McBride (SM) Algorithm:

$(n) = [y (n-1)...¢/ (n—ha) 2/ (n) ... 27 (n—1y)] "
Ag™},n)
A(g~t,n—1) ®)

where the superscript f in Equations (6) and (8) indi-
cates that the respective signal is preprocessed by the
all-pole filter A(q_ll L In order to obtain a simpler form
for the HCM, however, it is preferable to work with an-
other member of the SM family of adaptive algorithms,
namely the adaptive filter mode (AFM) [4], character-
ized by

d(n) = [ (n=1)...¢/ (n—1a) 2/ (n)...2 (n—1y)]
e(n) = eor(n) (9)

In the next section, we show the proposed mapping of
the SM-AFM algorithm as a direct combination of the
basic OE and EE adaptive schemes.

e(n) = esm(n) = eoe(n)

THE HOMOTOPY CONTINUATION
MAPPING

A homotopy function is defined as [9,10]

h(8,7) = rg(8) + (1 — 7)£(H) (10)

where 8 is the vector of parameters to be estimated and
7 is the homotopy parameter, usually constrained to the
interval [0,1]. The aim of a homotopy function is to
find the solution of the system of equations £(8) = 0




starting from the solution of another system of equations
g(0) = 0. In our case, we have

5V Elekg(n)] = Elepe(mdes(m)]  (11)
SV Elebp(n)] = Eleor(dop(m)]  (12)
In order to force h(8, 7) in Equation (10) to map the SM-

AFM adaptive algorithm using the MSOE and MSEE
formulations, 7 should be modified to the form

g(8)

£(6)

7(n) = dieg[ri(n)...75,(n) 0...0] (13)
where each 7;(n), from Equations (6)-(12), will then be
given by

ri(n) = Eleor(n)y! (n — i) — eop(n)§’ (n — i)
' Elepg(n)y(n — i) — eop(n)# (n - i)]

withi=1,..., fq.

(14)

Notice that the homotopy parameter given in Equation
(13) isin fact a diagonal matrix, as each individual adap-
tive filter coefficient requires an independent HCM. The
main reason for introducing the HCM for the SM adap-
tive algorithm is the possibility to analyze its conver-
gence process based on the convergence behavior of the
homotopy parameter. In fact when 7 is close to one the
SM algorithm is similar to the EE algorithm. Equiva-
lently, as 7 approaches zero the SM behavior becomes
more and more alike the OE. In practice, it can be ver-
ified that the value of the homotopic parameter is not
always constrained to the interval [0, 1]. From this fact,
it can be inferred that the SM presents some singular
characteristics different from the ones inherent to the
basic OE and EE schemes.

The OFE and EE adaptive algorithms approximate the
gradients given in Equations (11)-(12) by their instanta-
neous values at each instant of time n. Consequently, an
instantaneous approximation for the homotopy continu-
ation factor would then be given by

eop(n)y! (n — i) — eop(n)g’ (n — i)
- = - (15)
eee(n)y(n — 1) — eop(n)y/ (n - i)
Due to noisy characteristics of adaptive processes, how-
ever, this formula for the HCM tends to be unprecise
and noisy. In the following section, we present some nu-
merical examples and possible interesting analysis of the
proposed HCM for the AFM-SM algorithm.

‘f';(n) =

COMPUTATIONAL SIMULATIONS

Example I
In this example, let the plant be given by
1
H(q) = (16)

1-0.8¢"1
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and the adaptive filter be characterized by n, = 1
and 7y = 0. Let also the input signal z(n) be a zero
mean, unity variance Gaussian noise, g = 0.001, and
(@1(0); bo(0)) = (0;0) be the initial point of the adaptive
filter. Consider thus two distinct cases: A) The pertur-
bation noise is a Gaussian noise N[0, 0.1] independent to
the input signal; B) The perturbation noise is the out-
put of an IIR filter V(q) = T.lsq-“x to a Gaussian noise
N[0,0.1] independent to the input signal. The conver-
gence behavior for the homotopy parameter 7 (n) for the
two cases in this example can be visualized respectively
in Figure 2 and Figure 3.
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Figure 2: Convergence Behavior (and Detail) of the Ho-
motopy Parameter: (A) White Noise Perturbation - Ex-
ample I.
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Figure 3: Convergence Behavior (and Detail) of the Ho-
motopy Parameter: (B) Colored Noise Perturbation -
Example 1.

Both figures show that in the beginning of the adaptation
process, the AFM-SM performance resembled the one



of the EE algorithm, as my(n) = 1. Figure 2 (detail)
also shows that in case (A), the homotopy parameter
converges to zero, and consequently the SM algorithm
tends to behave like the OE algorithm. From Figure
3 (detail), in the presence of colored noise (Case (B)),
the SM algorithm becomes biased with respect to the
MSOE solution, as the homotopic parameter does not
converge to zero in average. In this example, we obtained
lim,_oomi(n) ~ 0.237.

Example IT
In this example, let the plant be described by [7]
0.05 — 0.4¢7}
H(g) = ! (17)

1-0.0003¢~1 — 0.68915¢~2

and let the adaptive filter be of the same type as in Ex-
ample I. Using the same initial conditions and u of the
previous example, the behavior of the homotopy param-
eter 71(n) in this case can be seen in Figure 4.
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Figure 4: Convergence Behavior (and Detail) of the Ho-
motopy Parameter - Example I1.

From Figure 4, once again as 7i(n) =~ 1 in the begin-
ning of the adaptive process, the SM algorithm resem-
bles the EE algorithm. Also, after a somewhat intricate
behavior at the intermediary part of the process, 71(n)
approximates zero and the SM algorithm tends to be-
have similarly to the OE algorithm. Notice from Fig-
ure 4 (detail), however, that as 7(n) does not converge
to zero in average, the SM algorithm cannot be said to
minimize the MSOE in this example. In fact, in this
case, we have the homotopic parameter converging to
limy o1 (n) = 0.270.

A final note about the experimental figures included in
this paper must be added: Figures 2, 3 and 4 were ob-
tained from an ensemble average of 1000 of the respective
experiments above described. Also, in order to reduce
the influence of the denominator of the fraction given in

Equation (14) being close to zero in the final figures, a
median filter [11] with window length equals 5 was used,
and a subsequent decimation (by the order of 10) of the
median filter output was performed.

CONCLUSIONS

In this paper, a homotopy continuation mapping for the
SM adaptive algorithm was presented. The main mo-
tivation for this research is to associate the SM algo-
rithm with two other adaptive algorithms, namely the
OE and EE methods. By utilizing the homotopy contin-
uation parameter, a clearer physical interpretation of the
overall convergence behavior of the SM algorithm can be
achieved.
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