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Abstract

Adaptive infinite-duration impulse response (IIR)
filters have been studied as a possible alternative to
adaptive finite-duration impulse response (FIR) fil-
ters. Two of the best known approaches for adaptive
IIR filtering include the outpul error (OE) and the
equation error (EE) algorithms. In this paper, a new
algorithm, the so-called composite square error (CSE)
algorithm, for adaptive IR filtering is tntroduced based
on the explicit combination of the OF and and EFE
schemes. An innovative strategy for updating the com-
posite factor and force the proposed algorithm to con-
verge lo the OF solution is also presented. Ezamples
are included 10 demonstrate some of the wnileresting
features of the new technique.

1 Introduction

In the last years, adaptive infinite-duration impulse
response (IIR) filters have been studied as a possi-
ble alternative to adaptive finite-duration impulse re-
sponse (FIR) filters. The main advantage of adaptive
1IR filters when compared to adaptive FIR filters is
their efficiency with respect to the number of coef-
ficients when modeling systems with high selectivity
poles. However, research has shown that adaptive IIR
filters can present some serious implementation and
convergence problems, such as: Possible existence of
suboptimal (biased or local minimum) solutions, re-
quirement of stability monitoring, slow convergence,
etc. In an attempt to overcome these problems, several
techniques applicable to adaptive IIR filtering have
been presented in the literature [1,2}.
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The two most commonly known approaches for adap-
tive IIR filtering are the output error (OE) and the
equation error (EE) algorithms {1,2]. Probably the
best feature of the OF and EE schemes is the fact that
each algorithm can be associated to a performance sur-
face [3]. This property allows a better understanding
of the general convergence characteristics of these two
adaptive techniques.

The mean square output error (MSOE) performance
surface associated to the OE algorithm has an un-
biased global minimum when the additional noise is
independent to the input signal. However, this sur-
face may present suboptimal local minima in cases of
insufficient order modeling!, or when the unimodality
condition of Soderstrom [4] is not satisfied in cases of
sufficient order identification. In cases of strictly suf-
ficient order modeling, the unimodality of the MSOE
performance surface can be guaranteed if the more
general sufficient condition of Nayeri [5] is satisfied.
On the other hand, the EE is a simple adaptive algo-
rithm that presents a unimodal mean square equation
error (MSEE) performance surface and good stability
characteristics. However, the EE algorithn may result
in a biased solution, as in cases of presence of measure-
ment/modeling noise in the desired output signal.

In this paper, we introduce the composite square er-
ror (CSE) algorithm that attempts to combine the
good individual characteristics of both the OFE and
EE adaptive IIR algorithms. In order to aliow a better
control on the overall properties of the CSE algorithm,
the composition of the OF and EE algorithms is made
in a explicit form, following the approach of Kenney

11f the orders of both the numerator and denominator poly-
nomials of the adaptive filter are greater or equal to those of
the plant or unknown system, the case is called sufficient order
identification. If the orders are both egual, we call it a strictly
sufficient order case. Otherwise, it is called an insufficient order
problem of system identification.



and Rohrs in [6]. By composing the error square sig-
nal with the square values of the OE and EE signals,
as opposed to the simple addition of these individual
signals as in {7], an easier way to determine the per-
formance surface associated to the resultant composite
algorithm is achieved through the direct composition
of the MSOE and MSEE error functions. This fact
results into simpler analyses of the final convergence
properties of the resultant algorithm.

This paper is organized as follows: In the next section,
we present the OE and EE algorithms for adaptive [IR
filtering showing their respective updating equations.
Section III introduces the composite square error al-
gorithm and shows its direct relationship with the OE
and EE basic schemes. In Section 1V, we present an
innovative approach to update the composite param-
eter v and force the new algorithm to converge to
the optimal MSOE solution, n usually required fea-
ture for adaptive algorithms, specially in insufficient
order identification cases. Section V contains some
system identification simulations showing some inter-
esting features of the newly proposed techniques.

2 Problem statement

The general diagram of an adaptive IIR filter is shown
in Figure 1. In this figure, (n) is the input signal,
y(n) is the desired output signal, §(n) is the adaptive
output signal, and epg(n) is the output error signal.
In a system identification problem, the desired output
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Figure 1: Block Diagram of a General Adaptive Filter
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signal is assumed to be given by

(1)

where v(n) is the perturbation noise and yo(n) is the
output of an unknown system or plant described by

y(n) = yo(n) +v(n)
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the transfer function
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where ¢ represents the shift operator defined by
Flen)] = z(n — i), ¢™B(q) and ¢~ A(g) are
relatively coprime polynomials in ¢, and the zeros
of 2z« A(z) are assumed to be inside the unit circle
|z ]=1; z €. Similarly, g(n) is the output signal of
the adaptive IIR filter characterized by

N B(q,
H(g,n)= ;1—8%
B bo(n) + bi(n)g~ ' +... + IA),,E(n)q‘"E

1 —aj(n)g—t —...— @, (n)gne

(3)
By defining the adaptive filter coefficient vector as

8(n) = [(zll(n)...a,,a(n) bo(n) .. .bn,(n) g (4)

the basic form of a general adaptive algorithm can be
written as

8(n +1) = B(n) + u(n)e(n)$(n) (5)

where p(n) is a gain factor that can be a matrix or
a scalar, e(n) is an estimation error, and &(n) is the
regressor or information vector associated to the re-
spective adaptive algorithm.

The Qutput Error (OE) algorithm minimizes the
mean-square output error defined as E[e}g(n)], and
consequently for the OE algorithm we have

dop(n)= [f/f(fn—l). CH(n=nz) ef(n).. .rf(n—n;))]T
(6)

where the superscript f in indicates that the respective
signal is preprocessed by the all-pole filter

eoe(n)=y(n) — 4(n)

Meantime, the Equation Error (EE) algorithm at-
tempts to minimize the mean-square equation error
given by Ele%(n)] and the EE algorithm is charac-
terized by

dpe(n) = [y(n-1)...y(n—nz) z(n) .. .1f(n——nl;)]T

(M

epp(n)=A(g™" n)eor(n)
3 The combined square error adaptive
algorithm

Let us now introduce a new IIR adaptive algorithm,
so-called the combined square error (CSE) algorithm,



that explicitly combines the OE and EE algorithms in
the following form

etse(n) = vepp(n) + (1—nedp(n)+ K (8)

where v is the combining parameter and K > 0 is
a constant that guarantees the right-hand side of the
above equation to be nonnegative for a general range
of the values of 4. Notice that if K is set to zero, the
combining parameter v must be constrained to the in-
terval [0, 1] in order to assure coherence and validity to
the definition of €2 5 (n) given above. Using equation
(8), the mean combined square error (MCSE) perfor-
mance surface assoclated to the CSE algorithm can be
directly calculated as being described by

Elet sp(m)=vE[egp(n)]+(1-7)E[elg(n)]+K (9)

i.e., the MCSE performance surface is obtained by
the weighted combination of the MSOE and MSEE
surfaces plus a constant K > 0 that assures the non-
negativity of the MCSE function.

Obtaining the updating equation characteristic of the
CSE adaptive algorithm based on a steepest descent
minimization scheme, we have

8(n+1) = 8(n) — u' V plelsp(n)] (10)

where, from equation (8), the composite square gradi-
ent vector VY = Vg[e%-SE(n)] is given by

V=1V glebp(m]+(1-7V ledp(n)]

= —2[vepe(n)dpp(n)+(1—7)eoe (n)dop(n)] (11)

This equation shows that the instantaneous gradient
vector of the CSE algorithm is a combination of the in-
stantaneous gradient vectors of the OE and EE adap-
tive algorithms, as expected due to the definition used
for the combined square error signal.

4 A time-varying composite parameter
for the CSE algorithm

As mentioned before, the EE algorithm possesses some
interesting convergence properties as overall stability
and unique solution. Unfortunately, however, the final
solution for this algorithm tends to be biased in the
presence of perturbation signal. On the other hand,
the OF algorithm is characterized by possibly unsta-
ble adaptation and/or convergence to suboptimal so-
Iutions. However, the global optimum solution of the
OE algorithm is proved unbiased even in the pres-
ence of any kind of perturbation signal statistically
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independent of the input signal. Consequently, one
could conclude that an ideal kind of adaptive algo-
rithm would be the one that combines the good initial
features of the EE algorithm, as good stability proper-
ties and unique solution, with the good final property
of the OE of unbiased global optimum solution. This
can be achieved by using the proposed CSE algorithm
with a time-varying composite parameter ¥y = y(n)
with value initially set to one and approximating zero
as the adaptation process converges. One form to im-
plement this approach would be to use a time-varying
composite factor with a recursive updating equation
of the form

y(n +1)=7(n) - l"vv'y[e%‘SE(n)]
=7(n) = mylepg(n) — eop(n)] (12)

and limiting y(n) to the interval y(n) € [0, 1] by ap-
plying a saturation procedure to the value of v(n)
given by the above equation. Notice, however, that
as the above scheme is based on the minimization
of the mean composite square error, ¥(n) will con-
verge to one if Ee%p(n)]* < Eledp(n)]*, or zero in
case of Ele%p(n)]* > Elebp(n)]*, where Elekg(n))*
and EfeZ (n)]" are respectively the minimum mean
square equation error and output error values. In or-
der to force the composite parameter to converge to
zero in all cases, we need to modify equation (12) to
the form

¥(n+ 1) = y(n) — pylegp(n) — edp(n)| (13)

and also continue to make sure that value of the com-
posite parameter stays in the interval y(n) € [0,1].
As a final note for this section, it should be reempha-
sized that the need for constraining the value of y(n)
to the closed interval [0, 1] is to guarantee the mainte-
nance of a mathematical and physical meaning to the
composite square error signal.

5 Computational simulations

In this example, consider the plant described by (8]

0.05 — 0.4¢~*
1—0.0003¢—! - 0.68915¢—2

and let the adaptive filter be characterized by n; =1
and ny;=0. Assume also a zero mean, unitary variance
Gaussian noise as input signal z(n) and no perturba-
tion noise being present in the desired output signal.
Let us apply the proposed CSE algorithm with time-
varying composite parameter to perform the insuf-
ficient order 1dentification problem above described.

H(q) = (14)



Assume pu = 0.002, g, = 0.0015, y(0) = 1, and zero
initial conditions, t.e., let [a;(0) 130(0)] = [0 0] be the
initial point for the adaptive filter.

Figure 2 depicts the convergence of the adaptive filter
coefficient vector [a;(n) b1(n)]T and Figure 3 shows
the trajectory followed by the composite factor dur-
ing the adaptation process. Notice from those figures
that the adaptive filter converges to the MSOE global
optimal solution following characterized.

Figure 4 shows the mean composite square error
(MCSE) performance surface for several values of the
combining factor y. Notice that as v approaches one,
the more quadratic and well behaved the MCSE func-
tion is, as opposed to the unbiased and multimodal
surface associated to values of v close to zero. Ac-
tually, for values in the interval 0 < v < = 0.28
the MSCE seems to be multimodal, and when y =
0 the error function presents a local minimum at
[@7 b5] = [-0.85 —0.15] and a global minimum at
[a% by] = [0.89 0.21].

6 Conclusions

In this work, we presented an alternative algorithm
for adaptive IIR filtering based on composition of
the well known output error and equation error basic
schemes. The new algorithm, denominated the com-
posite square error (CSE) algorithm, has an additional
combination factor that allows control of the stabil-
ity and bias characteristics of the resultant adapta-
tion process. A new strategy for using a time-varying
combination parameter was also introduced. Exam-
ples were included to demonstrate the positive results
achieved with the proposed techniques.
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Figure 2: Adaptive Filter Coefficients Convergence
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Figure 3: Composite Parameter Convergence
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Figure 4: (A) MSCE Performance Surface - v = 1.0
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