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Abstract: Adaptive IIR algorithms are imple-
mented based on lattice realizations allowing the
adaptive filter poles to be monitored in real-time.
New simplified recursive-in-order equations are
presented relating the parameters of the direct-
form realization to the ones of the two-multiplier
IIR lattice realization. Those equations yield a
general method to implement any adaptive IIR
algorithm including the members of the equation
error family of algorithms. Based on these new
techniques, computationally efficient algorithms
requiring O(N) multiplications are obtained for
the lattice structure. Simulations are included
to demonstrate the usefulness and validity of the
proposed methods.

I. INTRODUCTION

Adaptive IR filters are a potential alternative to adap-
tive FIR filters as they are able to model real systems
with sharp resonances using significantly less coefficients.
Standard adaptive IIR algorithms are commonly pre-
sented in the literature based on the direct-form real-
1zation to obtain a simpler understanding of the nature
of the respective algorithm as well as of its convergence
properties. The direct-form realization, however, is not
suitable for practical implementations of adaptive filters
because it does not allow an efficient on-line pole mon-
itoring as required by several adaptive IIR algorithms
to avoid instability of the adaptive filter. Consequently,
several alternative structures have been considered for
the implementation of adaptive IIR algorithms.

The lattice realization [1], [2] is an example of a fil-
ter structure the stability of which can be ensured in
real time making this structure well suited for adaptive
IR filtering. The relationships between the solutions of
adaptive algorithms based on the lattice and the direct-
form realizations were first studied by Nayeri in [3]. In
[3], it was proven that the convergence points of an adap-
tive algorithm using the lattice structure present an one-
to-one correspondence with the solutions of the direct-
form version of the same algorithm. This property, fur-
ther motivated the idea of using the lattice structure
as an efficient and equivalent alternative realization for
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adaptive IIR filters. Initial attempts of applying lat-
tice structure to adaptive IIR filtering [4], [5] have lead
to computationally complex adaptive algorithms. New
more efficient lattice-based adaptive ITR algorithms have
been presented in the literature [6]-[8] recently. However,
those algorithms do not include the equation error family
of algorithms.

In this paper, new methods to implement adaptive al-
gorithms using lattice realizations are presented. Due
to generality of those new techniques, lattice-based ver-
sions can be obtained for any currently known adaptive
IIR algorithm, including the members of the equation
error family of algorithms.

The paper is organized as follows: In the next sec-
tion, the two-multiplier lattice form is presented along
with a new technique for finding a similar lattice real-
ization of a given transfer function. In section III, an
efficient form to implement lattice-based adaptive IIR al-
gorithms is discussed. A composite adaptive algorithm
is implemented using the proposed techniques and used
in computer simulations to verify the performance of the
proposed method in practical situations.

II. THE TWO-MULTIPLIER IIR LATTICE
REALIZATION

As described in [1], a rational transfer function of the
form
_ B]\,V(Z) _ bg + 612—1 + .4+ bNZ_N
TAN(z) T 1dazt 4 anzV

H{(z) (1)

can be implemented using an alternative set of parame-

ters 620 = [k1 ... kn ko ... hy]’ ! obtained from the
following set of equations [1]:

Am-1(2)=[Am(2) = knAn (z71)27" /(1= k) (2a)
Br—1(2)=Bm(2) = A (27 )z hp; m=N,...,1(2b)
where the polynomials A, (z) and By, () are defined as:
Am(2)=tmo+am127 4. Fap mz™™ (3a)

B (2)=bmotbm 12" +.. AbmmzT " m=N,..., 1(3b)

!The subscripts d and ¢ will be used throughout the text to
associate a given variable respectively to the direct-form or lattice
realizations. More specifically, the subscripts 24 and 4¢ will refer to
the two-multiplier and normalized lattice structures, respectively.
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with @,, o = 1. The @y coefficients are then obtained by
km = amm and by = by, for m= N, ... 1, and also
h() = b0’0<

Using the 844 coefficients then, the output signal, y(n),
of the corresponding two-multiplier lattice filter to an
input signal z(n), can be calculated by the following set
of equations:

Fi(m)=Fit1(n) — kis1Gi(n—=1); i=N—-1,...,0 (4a)
Gj(n)sz_l(n—1)+kij_1(n); j=1...,N (4b)

N
y(n)=>_ h;G;(n) (4c)
j=0

with Fn(n) = z(n) and Go(n) = Fo(n).

An alternative approach to implement the H{z) trans-
fer function still using the 89 coefficients is obtained
based on the relationships given in the following lemma:

Lemma 1: Consider the A, (%) and By, (%) polynomials
for m=N,...,1 as given in (3) and the parameter vec-

tor 8¢. Then, the following recursive-in-order equations
hold:

A (2)= A (2) + k';’: .
[Am1 (2) = (1=K ) Amea(2)] 27 (5a)

B (2)=Bm- (2) + %
[Am(2)—(1=k2)Ami(2)]; m=2,...,N (5b)

with Ag(z) =1, A1(2) = 1 + k1271, and By(z) = (ho +
hlkl) -+ hlz“l.

The proof of of this lemma is obtained from algebraic
manipulation of equations (2) for the filter described by
(1). The initial conditions for m = 0,1 are obtained
by simple algebraic calculations. It is interesting to
note that equations (5) include solely causal polynomi-
als while equations (2) include also noncausal terms. An
important consequence of equation (5a) is that:

/ i km
Am(z):Am—l(Z)+ N
km—l

[ At (2) = (1= K2y ) Amoa ()] 271 (6)

for the same initial conditions for A,,(z) and values of

m as before, where the auxiliary polynomial A,,(z) is
defined as:

A (D) =An(z)=1=az 4. +anz"™ (7)

Based on the above given recursions, the output y(n)
of an IR filter H(z) to an input signal z(n) can then be
obtained by rewriting the input/output relationship in
the time domain as:

y(n) = B (q) {z(n)} — Ay (q) {y(n)} (8)

For the computation of the above equation using lemma
1, it is required that Bn(g){z(n)} is obtained using

equation (5b) recursively with m = 2,..., N and analo-
gously A}V(q) {y(n)} using equation (6). It can be easily
seen that the computation effort required to compute the
output signal y(n) via the above equation (8) is higher
that the one required by the standard form given by (4).
In the next section, however, it will be indicated how the
recursions given in lemma 1 can be used in the efficient
implementation of lattice-based adaptive IR algorithms.

IT1. LATTICE-BASED ADAPTIVE IIR
ALGORITHMS

The basic form of a general adaptive filtering algo-
rithm can be written as:

8(n+1) = 6(n) + pu(n)e(n)o(n) (9)

where 8(n) is the adaptive filter coefficient vector, p(n)
is a gain factor that can be a matrix or ascalar, e(n) is an
estimation error, and ¢ (n) is the regressor or information
vector associated to the respective adaptive algorithm.
The implementation of the above updating equation
using the coefficients @9y of the lattice realization as
8(n) is suggested. The estimation error e(n) and the
regressor vector ¢(n) are defined as in the direct-form
version, but are evaluated using a recursive approach
like the one leading to equation (8) which is based on
the recursive-in-order equations of lemma 1. Thus, it is
guaranteed that e;(n) = eq(n) and ¢,(n) = ¢4(n), and
then an entirely equivalent updating process is obtained
with the additional feature of enabling pole-monitoring
during the convergence process to avoid instability of the
adaptive filter. In [7] it was shown that this approach
generates a lattice-based algorithm fully consistent with
the standard direct-form algorithmin the sense that both
methods yield a set of stationary points corresponding to
the same input/output description for the adaptive filter.
This follows from the fact that the stationary points of
an adaptive algorithm are the solutions of the equation:

E[e(m)é(n)] =0 (10)

For equivalent direct-form and two-multiplier lattice re-
alizations, the residual errors are automatically equal.
Moreover, from the above proposed simplification, the
corresponding regression vectors also become identical,
and consequently the following result applies:

E [ed(n)ﬁbd(n)] — 0= E [eu(n)(;’)zg(n)] -0 (11)

The equivalence between direct-form and simplified lat-
tice algorithms has also been verified through several
computer simulations [6], [7] and via analytical methods
in [8].

Using the proposed simplification ¢,(n) = ¢4(n) for
the regressor vector and utilizing the recursive equa-
tions (5)-(6), lattice-based algorithms are efficiently im-
plemented, requiring O(N) multiplication/division oper-
ations as opposed to the O(N?) operations required by
earlier lattice adaptive algorithms [4], [5]. Thus, the al-
gorithms proposed here, along with the ones presented in

-190 -



[6]-[8], present similar computational complexity to their
equivalent direct-form counterparts with the additional
feature of allowing pole-monitoring to be implemented
in real time.

Remark: The extension of adaptive IIR algorithms
from the two-multiplier lattice to the normalized lattice
realization follows naturally from the relationships ex-
isting between the coefficients of those two structures.
Indeed, the normalized lattice structure has the set of

i i T
coefficients 84, = {431 coo ON hy ... hN] that are re-
lated to the entries of 85, by the following equations [2}:

singi=k;; i1=1,..., N (12a)
ki .
hj=—; j=0,...,N {12b)
i
where the parameters m; are given by:
mi_1=mjcosd;_q; j=N-~1,...,1 (13)

with mn = 1. Applying those relationships to the equa-
tions given in lemma 1, we obtain recursive-in-order
equations for the normalized lattice realization equiva-
lent to (5)-(6).

IV. SIMULATIONS

To illustrate the application and generality of the pre-
viously proposed methods, the implementation of the
composite square error (CSE) [9] algorithm is performed
here. The CSE algorithm combines the equation error
(EE) and output error (OE) methods [10] in an attempt
to obtain the stable convergence and unique solution as-
sociated with the EE algorithm and the unbiased global
solution characteristic to the OE algorithm. The CSE
algorithm is generally described by [9]:

Ab(n)=p(vepp(n)dpp(n)+(1-7)eor (n)bog(n)) (14)

where A8(n) = 6(n + 1) — 6(n) is the increment in the
adaptive filter coefficient vector from the instant of time
nton+1, and e(n) and ¢ (n) are respectively the residual
error and the information vector associated to the corre-
sponding scheme indicated by their subindeces. Also, «y
is the weighting parameter that adjusts the combination
scheme between the EE and OF algorithms.

In the simulations performed here, an adaptive two-

multiplier lattice filter is used such that ég[(n) =
. R . . T
[ki(n) . kn(n) ho(n) ... hw(n)] . Moreover, as pre-
viously indicated, the error signals and the regressor vec-
tors for the OF and EE schemes are given as standardly
_defined for the direct-form realization [10}, but they are
calculated here using the lattice structure coefficients
and the recursive-in-order equations given in lemma 1.

Consider then the system identification example de-
scribed in [4] where the plant is defined as:

(g = LUIB4H0.0462071 40,0462 240015070 |
9 =TI 7004714157292 0.4583¢ -3

which yields the two-multiplier lattice coefficient vector
given by:

6%, =[—8756 .8355 —.4583 .0857 .1455 .0769 .0154] (16)

Consider an adaptive filter with N = 3 corresponding to
a strictly sufficient order identification case and let the
input signal be a white noise with zero mean and unity
variance. Assume also a perturbation signal statistically
independent to the input signal consisting of white noise
with zero mean and variance o2 = 0.007.

Fig. 1 and Fig. 2 show the convergence trajecto-
ries followed by the adaptive coeflicients in equation (14)
when 4 = 1. This corresponds to the case when the CSE
algorithm degenerates into the EE algorithm. It can be
observed that due to the presence of a perturbation sig-
nal, the solution achieved by these methods was biased
with regards to the optimal one represented in these fig-
ures by the dotted lines. In this simulation, the value
of the convergence parameter was optimized for a faster
stable convergence via trial and error and it was equal
e = 0.06.

When the value of the composite factor is decreased
from v = 1 to v = 0, the coeflicient vector bias observed
in the previous figures should be eliminated, as the CSE
algorithms behaves more and more alike the OE algo-
rithm as v approaches zero. This fact can be clearly
observed in Fig. 3 and Fig. 4 obtained for the case where
the value of y is decreased 0.1 units every 5000 iterations,
starting from v = 1 until it reaches v = 0, remaining
null thereafter. For this case, due to the worst stability
properties associated to the OF algorithm, the value of
the convergence factor had to be reduced to g = 0.01
to avoid instability during the adaptation process, slow-
ing down the overall convergence speed, but allowing the
algorithm to converge to the global optimal solution.

The same simulation example was performed using the
direct-form structure to realize the adaptive IIR filter.
This direct-form version presented convergence problems
due to instability of the adaptive filter during the adapta-
tion process. To eliminate this problem the convergence
parameter p had to be significantly reduced largely in-
creasing the number of iterations to achieve a satisfac-
tory steady-state. This fact clearly demonstrates the im-
provements that result from implementing adaptive IIR
algorithms using the lattice structure.

V. CONCLUSION

In this paper, lattice-based versions of adaptive IIR
algorithms were discussed. Relationships of the param-
eters of the direct-form and two lattice realizations were
mentioned. It was shown that those equations lead to the
implementation of efficient and consistent lattice-based
adaptive IR algorithms, including members of the equa-
tion error family of algorithms. Computer simulations of
a composite adaptive ITR algorithm were performed to
demonstrate the application and generality of the pro-
posed methods. The results presented here and in others
found in the literature indicate that the lattice structure
constitutes an important and efficient tool for the real-
ization of real-time adaptive IR filters.
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Fig. 1: CSE algorithm - v = 1 - k(n) coefficients.
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Fig. 2: CSE algorithm - y = 1 - k(n) coefficients.

Fig. 3: CSE algorithm - Decreasing v - k(n)
coefficients.
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Fig. 4: CSE algorithm - Decreasing v - h(n)
coeflicients.
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