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ABSTRACT

The extension of the equation error (EE) adaptive
algorithm to others than the direct-form realization
is investigated. Implementing the EE algorithm with
nondirect-form realizations is justified by the existence
of EE-based adaptive algorithms that require continu-
ous pole monitoring to avoid instability of the adaptive
filter during the convergence process. Due to their re-
spective importance, focus is given to the parallel, cas-
cade, and lattice realizations. It is concluded that while
the parallel and cascade structures present serious prob-
lems for a straightforward extension, the lattice realiza-
tion is shown to be extremely suitable for efficient im-
plementation of the EE algorithm.

I. INTRODUCTION

The equation error (EE) method is a simple algorithm
for updating the coefficients of an adaptive IR filter [1-
2] based on the EE signal defined as

g

eg(n) = y(n)—{-z di(n)y(n—i)—z bs(n)z(n—7)
j=0

i=1

= A(g, n)[y(n)] = Blg, n)[z(n)] 1)

where z(n) and y(n) are respectively the input and de-
sired output signals, and B(q,n) and A(q,n) are the
difference polynomial operators respectively associated
with the numerator and denominator of the direct-form
transfer function of the adaptive filter. The standard
EE algorithm is then described by the updating equa-

tion

8a(n+1) = Ba(n)+per (n) g (n) (2)
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where 84(n) is the direct-form coefficient vector defined
as

. “ T
i, (n) bo(n) ... bna(n)] (3)

p 1s the convergence factor that controls the speed and
stability of the overall adaptation scheme, and ¢ (n) is
the EE information vector given by

84(n) = {al(n)

dp(n) = [y(n-1)... y(n—na)e(n)... a(n-ny)]" (4)

It is important to notice that the composition of this in-
formation vector is obtained by differentiating the error
signal with respect to each of the adaptive filter coeffi-
clents.

The basic properties of this EE adaptive algorithm
are [1-2]:

¢ Quadratic and consequently unimodal error surface
with respect to the coefficients of the adaptive filter;

e Guaranteed stable convergence for a known range
of values of the convergence factor:

2
O<pp < 77— (5)
bp(n)dg(n)

¢ Unbiased minimum in cases of absence of measure-
ment and modelling perturbation noise and biased
solution otherwise.

The first two properties represent positive aspects as-
sociated with the standard EE algorithm. The fact that
this algorithm may converge to a suboptimal solution,
however, constitutes a major drawback of this technique
and has restricted its general use in many practical ap-
plications. As a consequence of that, several attempts
have been made to modify and improve the EE algo-
rithm resulting into new adaptive techniques such as the
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bias-remedy equation error [3] and the family of com-
bined error algorithms of [4-5]. All these variants of the
EE algorithm, however, do require some form of pole
monitoring for the adaptive filter in order to assure sta-
bility of the overall adaptation process. As in practice
the direct-form realization does not allow a computa-
tionally efficient pole monitoring procedure, the imple-
mentation of the EE algorithm with alternative realiza-
tions becomes a significant problem to be dealt with.

In this paper, we analyze the extension of the EE
scheme for realizations distinct from the direct-form,
concentrating our attention in the cascade, parallel, and
lattice digital realizations.

II. PARALLEL AND CASCADE
EXTENSIONS

The output signals of a parallel and a cascade adap-
tive filters are respectively calculated as

N/2
gp(n) = 4 3 Hi(g,n) ¢ [¢(n)] (6a)

i=1

w2
go(n) = ﬂHz'(q,n [z(n)] (6b)

where N is the filter order, here assumed to be even,
and H;(g,n) = %—(@% is the transfer function of each

H

individual block, which is considered to be of second
order here, i.e.,

; boi(n) + b1i(n)g~" + bas(n)g ™’
H; = — - 7
i(g,m) 14 a1i(n)g=t + azi(n)g~? @
For the parallel and cascade structures, the corre-

sponding numerator polynomials of the overall transfer
functions are respectively given by

N/2 N/2

Bp(g,n)=) < B H Ajg,m (8a)
= J#z
N/2 R

Be(g,n) = [ Bi(a,n) (8b)
i=1

whereas for the overall denominator polynomials, we
have that
N/2

HA (g;n 9)

From equations (8) and (9), it is clear that in both
cases of the parallel and cascade structures the EE sig-
nal defined in (1) is not a linear function of the adaptive

AP(Qu ) AC qa

filter coefficients. This results into nonquadratic and
multimodal performance surfaces for these two partic-
ular cases. Such existence of multiple solutions when
implementing an adaptive algorithm with the parallel
and cascade realizations has already been reported in
the literature by Nayeri and Jenkins in [6]. In fact, this
is a consequence of the possibility of interchanging the
order of the individual blocks without affecting the over-
all transfer function of the adaptive filter, keeping the
value of the corresponding EE signal unaltered. In here,
however, an even more complicated situation arises due
to the nonlinearity of the EE signal with respect to the
adaptive filter coefficients.

A possible solution for this problem guaranteeing uni-
modality of the resulting performance surface is to re-
define the EE signal forcing a linear relationship with
the filter coefficients. Such an example for the parallel
and cascade realizations could be

N/2 N/2

EA g,n)3 [y(n)] - ZBz (a,n

A quick glance at this equation, however, reveals that
the first derivative of this new error signal with respect
to each coefficient aj; or b;; would be identical for all

ep(n) = )¢ l2(n)] (10)

i=1,...,N/2, ie.,
deg(n) _ deg(n)
daj; — Oajg
i=1,2 f,g=1,...,N/2 (11a)
dep(n) _ dep(n)
bj s Bbjg
i=0,1,2; f,g=1,...,N/2  (11b)

In this manner, the definition of the information vector
would be the same for each of the composing blocks and
an updating routine of the form

B(n+1) = B(n)+peg (M)ds (n) (12)

would drive all individual N/2 blocks to exactly the
same point, making the adaptation process in this case
totally meaningless.

Based on these points, it can be conjectured that the
extension of the EE algorithm to either the parallel or
the cascade of block structures does not constitute a
practical alternative for the direct-form realization. In
the next section, however, an efficient implementation
of the EE algorithm using the lattice structure is intro-
duced, allowing the stability of the adaptive filter to be
monitored in real time.
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III. LATTICE EXTENSION

The output signal of a two-multiplier adaptive lattice
filter is calculated as

Fi(n):Fm(n)—lz:m(n)Gi(n—l); i=N~1,...,0(l3a)
Gj(n)=Gja(n—1)+k;(n)Fj1(n); j=1,...,N (13b)

N
g(n) =) hj(n)Gj(n) (13c)
J=0

with Fy(n) = z(n) and Go(n) = Fy(n), where the pa-
rameters k;(n) and h;(n) are the lattice coefficients and
N 1s the filter order.

In [7], it was verified that the N-order numerator
and denominator polynomials of the direct-form trans-

fer function I;[(q, n) = %(Z’—:)l can be calculated based
on the lattice coefficients using the following recursive-

in-order equations:

Am(g,n) :Am—l(q»")_,_ic

[Ams(,7) = (1=E2, (0)) Ams (g, )| 0" (142)

i ) -
Bon(g, ) = By (g, m) + 22,

(14b)

—

A (4,7) = (1= K2, (1) Arncs (g, )]

for m = 2,...,N, with Ao(q,ﬁn) = 1, fil(q,n) =
1+ ki(n)g™?, and Bi(q,n) = (ho(n) + h1(n)ki(n)) +
ﬁl(n)q‘l, With these equations, the EE signal can be
calculated as defined in (1), using the lattice coefficients
and therefore the implementation of the lattice-based

EE algorithm can be performed as follows
0i(n+1) = 8,(n)+pep(n)dg(n) (15)
where 8,(n) is the lattice coefficient vector defined as

~ ~ o ~ T
be(n) = [ks(n) ... kny(n) ho(n) ... hny(m)] " (16)

By using the same definition for the information vec-
tor as in equation (4), it is guaranteed that the above
updating process is consistent with the standard direct-
form algorithm in the sense that both methods yield a
set of stationary points corresponding to the same in-
put/output description for the adaptive filter.

IV. SIMULATION

In this section, a computer simulation is presented
using the lattice-based EE algorithm as described in the

previous section in a system identification problem. Let
the plant be defined as

q _0.015440.0462¢71+0.0462¢2+0.0154¢~3
(o) = 1-1.99¢—1+1.572¢-2—0.4583¢3

(17)

what corresponds an optimal lattice coefficient vector
equal to

k1 [ —0.87559 ]
ko 0.83546
ks —0.45830
;=1 ho | = 0.08565 (18)
hy 0.14549
ho 0.07685
| ha | | 0.01540 |

Consider an adaptive filter with N = 3 corresponding
to a strictly sufficient order identification case and let
the input signal be white noise with zero mean and unity
variance. Assume also a perturbation signal statistically
independent to the input signal consisting of white noise
with zero mean and variance o2 = 0.007.

Fig. 1 and Fig. 2 show the convergence trajectories
followed by the adaptive lattice coefficients updated by
the EE algorithm with g = 0.06. It can be observed
that due to the presence of a perturbation signal, the
solutions achieved here were biased with respect to the
optimal one represented by the dotted lines. A simi-
lar experiment without the presence of the perturbation
signal was then executed for the lattice-based EE algo-
rithms. As expected, in this case the lattice EE version
converged to its global solution as depicted in Fig. 3 and
Fig. 4, thus demonstrating the validity of the proposed
method.

V. CONCLUSION

The possibility of generalizing the equation error
adaptive algorithm with nondirect-form structures was
analyzed. The parallel and cascade of block structures
were considered along with the two-multiplier lattice re-
alization. It was concluded that the EE algorithm based
on the parallel and cascade realizations does not con-
stitute of a practical alternative for the direct form as
the resulting performance surface was nonquadratic and
multimodal. On the other hand, it was demonstrated
the viability of implementing the EE algorithm based on
the lattice structure allowing the stability of the adap-
tive filter to be determined on line. As a consequence,
the practical implementation of several variations of the
EE algorithm found in the literature becomes a concrete
reality.
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Fig. 1: Identification with noise - k(n) coefficients.
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Fig. 3: Identification without noise - k(n) coefficients.
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Fig. 2: Identification with noise - k(n) coefficients.
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Fig. 4: Identification without noise - h(n) coefficients.
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