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ABSTRACT

A stable parameterization of the direct-form structure
with simple stability monitoring is introduced for adap-
tive IIR filtering. The proposed structure is obtained
directly from passive RLC realizations. The stability of
the resulting adaptive IIR filter is guaranteed by ensur-
ing positive values for the equivalent passive RLC ele-
ments. Special attention is given to doubly terminated
RLC networks to achieve optimal sensitivity properties
of the overall transfer function with respect to param-
eter variations. Examples are included to demonstrate
the application of the proposed technique.

I. INTRODUCTION

Adaptive IIR filters are a good alternative to adaptive
FIR filters for modeling sharp resonances using signif-
icantly fewer coefficients [1]. The need for monitoring
the poles of IIR filters to ensure stability, however, can
be extremely costly, especially in cases where the adap-
tive filter is being implemented with the direct-form re-
alization. This problem has motivated researchers to
consider alternative forms for the adaptive filter real-
ization. For instance, the parallel and cascade struc-
tures [1], [2] can be realized based on second-order
transfer functions that can be easily checked for stabil-
ity, but additional stationary points, introduced in the
performance surfaces of these realizations by the over-
parameterization, further reduce the convergence speed
of the overall adaptation process. This work introduces
a new parameterization for adaptive IIR filters that al-
lows simple stability monitoring of the resulting realiza-
tion during the algorithm execution, while keeping the
number of parameters to a minimum. The proposed
parameterization is obtained from passive RLC-circuit
transfer functions through the bilinear transformation.
In this way, bounded-input bounded-output stability is
achieved as long as the adaptive filter parameters are
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positive. Additionally, optimal sensitivity with respect
to parameter variation can be achieved if doubly termi-
nated networks are used as initial passive circuits [3], [4].
This is a desirable characteristic in the context of adap-
tive IIR filters as it implies better stability properties in
a limited-precision format, as will be later demonstrated
via computer simulations.

Another approach dealing with adaptive filter struc-
tures derived from passive networks is described by
Forssén in [5]. This paper concentrates on a single spe-
cific digital filter realization and is, in consequence, less
general in its content.

In the next section, the implementation of adaptive
IIR filters based on the proposed realization is presented
in a step-by-step easy to follow form. In Section III,
a general discussion is included evaluating the conver-
gence and implementation properties of the proposed
structure. Simulations are included in Section IV in
order to illustrate the validity and usefulness of the pro-
posed technique.

II. PROPOSED PARAMETERIZATION

The starting point of the proposed adaptive IIR filter
realization is a given passive RLC network of a specific
order and spectrum characteristics (lowpass, highpass,
etc.). Let H(s) be the transfer function of this passive
network, and S;(s) the sensitivity functions of H (s) with
respect to the value of each of the passive elements X,
le.,

OH(s) .
3X, i=1,...,

where P is the number of passive elements of the net-
work. By applying the bilinear transformation [6] to
these functions, their discrete-time counterparts can be
obtained as functions of X; as

Si(s) =

P (1)

B() = H($)lmp ot (22)
5:(2) = Si(6)l,mg sy (2b)
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for a given sampling period T'. Based on these functions,
the output-error (OE) adaptive algorithm [1] can then
be implemented to update X; and the stability of H (2)
is guaranteed as long as the values of X; are nonnega-
tive.

A good option to use as basic passive circuit is
the doubly terminated RLC network that is known to
present optimal sensitivity of the filter with respect to
variations in the values of its passive elements.

In order to illustrate the proposed technique, an easy-

to-follow description is given here for the OE adaptive
IIR algorithm based on either lowpass or highpass dou-
bly terminated passive RLC networks. Other cases are
easily derived as extensions to these steps.
Step 1: Given a passive network, obtain the corre-
sponding transfer function. For the lowpass (LP) and
highpass (HP) doubly-terminated networks (DTN) we
have

1 1

Hip(s) = 5y eV sV T+ vy O
SN SN

Hyp(s) (3b)

- Dup(s) - hosN 4+ hysN-14 ...+ hy

where N is the order of the given transfer function, and
the coefficients I; and h; are functions of the passive
elements X; of the passive network.

Step 2: Generate the corresponding discrete-time
transfer function H(z) by applying the bilinear trans-
formation to H(s). This step is easily accomplished by
noticing that the LP-DTN and the HP-DTN will present
discrete-time transfer functions of the form

. 2+ )N (z+ 1)V
Hir() = =g o= = o Ty el
o (E=DN (z = )N
Hur(z) = D(z)  hosN + hizN"T+ -+ hy (#0)

respectively, where the coefficients l} and izj are ob-
tained from their continuous-time counterparts as

lo Iy Elo ho

] L h hy

= A T R I Y & B
in In - b

The (N+1)x (N +1) matrix M implements the corre-
sponding bilinear transformation to a N**-order poly-
nomial.

Step 3: The derivation of the discrete-time sensitivity
functions is greatly simplified by noticing that for both
the LP and HP networks these functions can be written
as
Sz = Nl gy
D(z)

_ fgoEN + AVl by

H(z)  (6)

D(2)
where the coefficients of N;(z) are calculated as
R 8iq R dhg
ni 35X, 23 0X;
=M . ; . =M . (7)
fis ol fis dhg
iN X, iN X;

These relationships are readily obtained by applying the
sensitivity function definition (2b) directly to equations
{4a) and (4b).

Step 4: Based on the discrete-time transfer function
and sensitivity functions given in equations (4) and (6),
the OF adaptive IIR algorithm [1] can be used to update
the adaptive-filter parameter vector composed of the
passive elements X;, i.e., 8(n) = [Xi(n) --- Xp(n)]”.
This algorithm is based on the output error signal given

by
eop(n) = y(n) — H(q) {z(n)} (8)
where ¢ is the linear unit-delay operator defined as
F{e(n)y=2n—k), keZ (9)

and z(n) and y(n) are, respectively, the input signal and
the desired output signal for the adaptive filter. Also,
the gradient vector associated with the OE algorithm is
given by

. He? N
Vos(n) = 2 = _copmdosn) (10
where ¢ p(n) is the information vector formed by the

sensitivity functions with respect to each of the elements
of B(n), i.e.,

N ~ N T
oz(n) = [Si() e} -+ Sp@) fem)}] (D)

From equation (6), it can be verified that the informa-
tion vector for the LP and HP doubly terminated net-
works can be simplified to the form

. . T
Mq) . Ne(q) (.
—={g(n)} -+ —={g(n)}| (12)
D(q) D(q)
which is more efficient to be implemented in real time.
Using (8) and (7), the OE algorithm based on a
steepest-descent approach [7] is then implemented for
the proposed stable parameterization as

8(n+1) = B(n) + peor (n)$og (n) (13)
where i is a convergence factor that controls the speed
and stability of the overall adaptation process. The sta-
bility of the resulting structure can then be guaranteed

by assuring that the values of the adaptive filter param-
eters X; remain nonnegative.

<270E (n) = [
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III. DISCUSSION

The most immediate advantage related to the passive
parameterization is the fact that the filter stability is
easily guaranteed as long as the elements of 6(n), X;
remain nonnegative. Additionally, as the stability moni-
toring is carried out by checking each coefficient individ-
ually, update stalemate is less likely to occur than with
methods that require 8(n + 1) = 8(n) once instability
is detected.

As mentioned before, the approach may lead to a
very low-sensitivity parameterization. This fact is an
interesting property for adaptive IIR filters when mod-
eling poles close to the unity circle, for variations in the
parameters have a reduced effect on the pole location.
The low sensitivity together with the simple stability-
checking routine impart robustness to the algorithm in
a real-time implementation.

It should be noted that the passive network used as
a design starting point will carry its properties to the
adaptive filter. Different networks like lowpass, high-
pass, bandpass, or bandstop circuits can be used accord-
ing to the application requirements. In channel equal-
ization [8], for example, the adaptive filter usually has
highpass characteristics. In general, the designer can
rely on prior knowledge of the problem at hand in order
to properly select the initial passive network.

IV. SIMULATIONS

R L

2
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Vin C1 T CS ‘l‘ $ Rout Vout
. - .

Figure 1: Third-Order RLC Passive Circuit

Before the computer simulations are described, let us
illustrate how the method can be applied to a passive
lowpass structure. Consider the passive RLC circuit
depicted in Fig. 1. Assuming that R;; = Ry = 1€,
the circuit is described by the transfer function H(s) =
Vout/Vin gi"en by

1 1

= D(s) = ags3 + a182 + azs + a3

with agp = (C1L2C3), a1 = (C1L2 + L2Cs), az = (C1 +
Lo+ 03), and a3z = 2.

H(s) (14)

The sensitivity functions of H(s) with respect to the
inductors and capacitors are

_0H(s) _ —LyC35® — Lys* —s

Sife) = St = ) (15a)
_0H(s) —C1C35° — (C1+Cs)s? — s .
Sa(s) = oL, - D7(s) (15b)
_ 6H(s) _ —ClL283 - L282 — 8 \
Ss(s) = 3Cs = 0 (15¢)

with D(s) defined as in (14).

The discrete-time transfer function is obtained
through the bilinear transformation which, for T = 2,
gives

. V 34322432+1
=t _siedietl g,
D(z) agz® + a1z + azz + as
with
&0 ag CILZC?:
a _ ay _ (Cl + Ca)Lz
az | M a | M| G4+ G (1n
as as 2

where M is the bilinear transformation matrix given in
this third-order case by

11 11
-3 -1 13
M=1'35 1 13 (18)
11 -1 1

Similar operations performed on the sensitivity func-
tions result in

6 () = M) V()

S = — -
1(2) D(z) D(z)
_ 1023 + fmfz + @122 + 13 () (192)
D(2)
N V V(2
Sa(z) = 2B M)
D(z) D(z)
_ d202° + &21{“’ + G222z + Qg3 H(z) (19b)
D(2)
. Y V
Saz) = T2 NG
D(z) D(z)
_ as0z® + az12? + dgaz + Gaa () (190)
D(z)
with the a;; coefficients given by
1o ~L2C3
ann | _ —L,
an | = M ~1 (20a)
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[ ago =103
ag1 —(C1+ Cs)
o ' (20b)

ER [ —Ci1Ls
) _I,

L Gas L 0

{20¢)

respectively.
The OFE adaptive IIR algorithm can be used to update
the parameter-vector

8(n) = [C1(n) La(n) Cs(n)}" (21)

as described in the previous section.

Example: In order to investigate the convergence char-
acteristics of the proposed algorithm, a system identifi-
cation scenario was created where the plant is described

by

22 4+3224+32+1 (
232123 +6.27722 +5.6832+ 1.719

H(z) = 22)
The proposed stable parameterization was compared to
the direct-form structure implementation [1] in a 60000-
point simulation using 32-bit floating-point arithmetic.
In both cases the OF algorithm was used to adapt the
initially relaxed denominator coefficients, whereas the
numerator coefficients were set to their optimal values.
The input signal was a zero-mean white Gaussian noise
with variance equal to 0.05. Fig. 2 shows the results
of the experiment. It can be clearly seen in this fig-
ure that the conventional direct-form structure imple-
mentation diverged even with a very small value of p,
in this case equal to 0.0004. Other tested values of u
resulted in eventual instability or extremely slow con-
vergence rates. On the other hand, for the proposed
parameterization p was chosen equal to 0.16 to achieve
maximum speed of convergence without causing insta-
bility. Stability checks were not implemented.

V. CONCLUSION

A new stable parameterization for IIR adaptive fil-
ters was introduced. The proposed approach relates the
discrete-time filter with a continuous-time passive real-
ization counterpart, which results in a simple stability-
monitoring routine. Furthermore, for certain passive
structures the optimal sensitivity of the transfer func-
tion with respect to parameter variations impart extra
robustness to the method. The closer to the unit circle
the poles of the filter are, the more advantageous the
low sensitivity is. An example was shown where the
proposed method is seen to compare very favorably to
the direct-form structure adaptive filter, for the latter
diverged.

e direct-form structure

le(m)l’, [9B}
&
3
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Figure 2: Convergence in time of the square value of
output error signal.
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