On the Composite Squared Error Algorithm for Adaptive IIR Filters
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Abstract

The composite squared errord(CSE) adaptation al-
gorithm for IIR filters is derived as a combination of
the equation error (EE) and the output error (OE) al-
gorithms. In this paper, the convergence process of the
CSFE adaptation algorithm is investigated. Steady-state
analysis is given relating the CSE stationary pownts to
the FE and OF stationary points. Transient analyses
of the CSE algorithm are obtained with the ordinary-
dzﬂehregce-equation approach and the local linearization
method.

1 Introduction

The block diagram of a general adaptive system is
seen in Figure 1, where x(ngj is the input signal, y(n)

is the adaptive-filter output signal, y(n) is the desired
output signal, and egg(n) is an error signal.
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Figure 1: Block diagram of a basic adaptive system.
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The adaptive filter is commonly described by
n: - .
B(q’ﬂ:| {z(n)} = >0 bi(n)g
Alg,n) 1+ 3000 a(n)g
A general adaptation algorithm has the form
B(n+1) = B(n) + u(n)e(n)b(n)

where 8(n) = [@1(n) .. .ang(n) bo(n) .. .bn; (n)]T is the
set of parameters being adapted, u(n) is a gain factor,

9(n) =

*This work was supported by CAPES and CNPq - Ministry
of Education (Brazil) and Micronet (Canada).

1058-6393/98 $10.00 © 1998 IEEE

Dept. Elec. Comp. Eng.
University of Victoria

P.O. Box 3055 — Victoria — BC
V8W3P6 — CANADA

pan@sirius.uvic.ca

e(n) is an estimation error, and (}S(nT) is the regression
vector associated to the algorithm. In this framework,
the EE and OFE algorithms are respectively character-
ized by
e(n)=egp(n)

=A(g,n){y(n)} - Blg,n}{z(n)}
@(n) = dgp(n)

T

=Fy(n=1)...—y(n—na) x(n)...z(n—n;)]
6(72) = 60E(n)

=y(n) — 9(n)
é(n)=¢op(n)

N . T
= (n=1) .. =g/ (n—nz) 2/(n) .. .2l (n—n;)]

where the superscript ¢ indicates that the correspond-

ing signal is processed by the all-pole filter — ( ; e The

gradient-type CSE adaptation algorithm is then de-
scribed by 3]

~ A

6(n+1)=6(n)
+[vesn (W) s (n)+(1=7)eor (M) bop(n)]
It can be shown that the CSE algorithm is the routine

that attempts to minimize the composite squared error
(CSE) signal, defined as

¢tsp(n) =vene(n) + (1 =7)edp(n) (1)

where v is the composite parameter commonly re-
strained to the interval 0 <+ < 1. From (1), the mean
composite square error (MCSE) performance surface is
given by

E[etsp(n)] = vE [egp(n)] + (1—9)E [ebp(n)]

2 Steady-State Analysis

The stationary points of the MCSE performance surface
are the solutions of

B [yer(n)bup(n)+(1-9eor (m)dop(n)] = 0



For that surface the following result applies.

Property 1: The stationary points of the CSE al-
gorithm are given by!

(VREpPhs + (1 - R pPoR]B" ~
9E [v(n) (@) {v(n)}] = 0

where the asterisk symbol indicates the respective vari-
able to be a solution of that equation, the vector
h = [hg...hy,,]T is composed by the coefficients of
H(q) = ho+ ...+ hn,q™™" = A(q)B(q) — Alg)B(q)
and v(n) = [v(n —1)...v(n-ng) 0...01T.

The implication of this property is that the stationary
points of the CSE algorithm are anywhere from unique,
as in the case of the EE algorithm (y = 1), to unbiased,
as in the case of the OF algorithm (y = 0).

3 Transient Analysis
3.1 Ordinary-Difference-Equation Method

Property 2: Let z(n) and v(n) be stationary processes
with finite first, second, and fourth moments [4]. If
A(g,n) is stable for all n and z(n) and v(n) are ¢-

mixing as defined in [1], then the behavior of the CSE
algorithm converges to the solution of the ordinary dif-
ference equation (ODE)

(e

=E [venr () dip(m)+(1-)eos (n)dop(n)]

with ©(0) =

©y,in probability, such that

P{ sw Jib(o

0<nT<LS

— 0 (nr)|| > cg(f)} <Ce(r) (2)

’ v, . .
where S, C, and C' are positive constants and £(7) is
a positive function going to zero as 7 decreases.

Example 1: Let the plant and the adaptive filter be
respectively given by

0.05 — 0.4¢~1
H =
(@) = 1= 0.0003¢—1 — 0.68915¢2
bo(n)
H — N
(q) ) 1_ a]_( )q_l

With ©(t) = [a1(

by(t)]T, the CSE algorithm can be
associated to the

DE given by

wiew] _ [7 Uratfil (=) featsl] g

dt 914+ 91B

1 A complete definition of the matrices RE‘E » Pr ROE, and
P} is given in the Appendix A.

where

= o
o= )
S e
szz—gl_—t;%é(%; (4d)
= R et
O (s

Figure 2 shows the predicted trajectories (left-hand
side), using (3)-(4), and the actual adaptive coefficient
trajectories (right-hand side) for distinct values of 7.
In this figure, it is easy to verify how well the proposed
analysis comphes with the actual results.

3.2 Local Linearization Method

The ensemble mean of the parameter trajectories

E[8(n)] generated by an adaptation algorithm is a de-
terministic locus [2]. For the CSE algorithm, one has

E[o(n+1)-8(n)] =
BE [ve5E(n)dpe(n) + (L= V)eon (M) don(n)]

This function can be approximated around a stationary
~ %
point 8 | using a first-order Taylor series, by

bn)| ~qElom -8 ()
where Q is a sensitivity matrix given by

2 62 n
gd E[dcégE( )] ‘é:é* (6)

Elb(n+1)-

Q=-

Defining the coefficient error vector as 8(n) = 8(n) —
6", equation (5) yields

E [é(n)} ~ (1+Q)"6(0) (7)

This equation indicates that the trajectories followed by
the CSE algorithm present a dumped exponential prop-
erty Contro%led by the absolute values of the eigenvalues
of the matrix (I + Q).

Property 3: Let 8" be the minimum of a concave
region R of the MCSE performance surface and assume
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that the adaptive filter remains stable throughout the
adaptation process. Convergence of the CSE algorithm

to 8 is then guaranteed, for a sufficiently small value
of u, if the adaptive filter is initialized in R.

Example 2: Consider an identification case where
ng =ng =1, ny =ny =0, and v(n) = 0. Thus

y(n) = boz(n) —a1y(n — 1)

§(n) = bo(n)a(n) - ar(n)g(n — 1)
Assume the input signal z(n) is a Gaussian noise with
zero mean and unitary variancAe*‘ Then, in a neighbor-
hood of the stationary point 8 = [a; bo]T, with the

CSE algorithm, E[@(n)] evolves as in (7) with

20 gt a2 132
_ (3a2y (fﬂgasl )3 —(1- 7)?1_(?5?)_2
Q=up asb (a3v=1)

—(I-"adn (=a)

For the case with a; = 0.7, bp = 0.5, and g = 0.002, the
predicted (left-hand side), using the local linearization
method, and the actual (right-hand side) trajectories
followed by the CSE algorithm are shown in Figure 3.

When a; = 0.85, bg = 1.7, p = 0.001, and 8(0) =
[0.85 1.84]7, the convergence speed of the CSE al-
gorithm was measured, for several values of v, by the
number of iterations N for which ||B(n)|§ <107%,¥n >
N. The averaged results over an ensemble of 12 exper-
iments are listed in Table 1 along with the eigenvalues
of the matrix (Q + I). Notice that |As] becomes the
major factor to determine the convergence speed of the
algorithm, as the value of [A;], of the same magnitude

order of |Az], remains practically unchanged.

Table 1: Example 2 - Eigenvalues of the (Q+1I) Matrix
and Number of Iterations N for Convergence of the CSE
Algorithm as Functions of Composite Factor +.

¥ [A] [As] N
0.0 10.9979 1 0.7655 [ 1591
0.1 109980 | 0.7879 | 1719
0.2 | 0.9981 | 0.8103 | 1808
0.3 09982 | 0.8328 | 1908
0.4 | 0.9983 | 0.8552 | 2094
0.5 | 0.9984 | 0.8776 | 2204
0.6 | 0.9985 | 0.9000 | 2474
0.7 1 0.9986 | 0.9224 | 2690
0.8 | 0.9987 | 0.9448 { 2949
0.9 ] 0.9989 | 0.9672 | 3285
1.0 | 0.9990 | 0.9896 | 3762

4 Conclusion

In this paper, a thorough study of the composite
squared error (CSE) algorithm was performed. In that
manner, the transient and the steady-state parts of the
CSE convergence process were analyzed. The results
showed that the CSE algorithm can take advantage
of the quadratic nature of the equation error scheme
andhths unbiased global minimum of the output error
method.
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Appendix A

Definition 1: The plant coefficient matrix of order
(ng+ny+1)x(np+n;+1), the adaptive filter coefficient

matrix of order (ng + ng + 1) x (nz + ny — ny + 1), and
the matrices of orders (nj, +n; +1)x(np +1) and (na+
n; —n; + 1) x(ny + 1) are respectively defined by

r0 —bo ... —bn, 0 ... 0
L R B
o 01w a, ]
) —-Bo ——EnE 0 . 0 W
Rog = (1) a~1~ 0 E:f;) 0 _%773
L(; 0 1 a 67:1@ |
\ z(n)
1 .
e E[(@){[ z(n—np—n) }}} |
_L(_q)_ z(n z(n—n
[ (i) et otnna)
Pop = E ( 1 ) o)
A(Q) 1(q) z(n—ng—ny+n;) .
1
() - sto=m]
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Figure 2: Example 1 - CSE parameter trajectories: Predicted with the ODE method (left-hand side) and actual
with g = 0.0005 (right-hand side). (A) and (B): v = 1.0; (C) and (D): v = 0.2; (E) and (F): v = 0.0. Circles
indicate different initial conditions for the adaptive filter. Crosses indicate progress at every 500 of the first 2500
iterations.
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Figure 3: Example 2 - CSE parameter trajectories: Predicted with the local linearization method (left-hand side)
and actual (right-hand side). (A) and (B): v = 1.0; (C) and (D): v = 0.8; (E) and (F): ¥ = 0.0. Crosses indicate
progress at every 200 of the first 1000 iterations.
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