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Abstract: A new approach for designing nonrecursive di-
gital filters is proposed. The method is able to compromise
the minimaz efficiency of mazimizing the stopband attenu-
ation and the ability of the weighted least-squares (WLS)
method to minimize the total stopband energy. The ap-
proach uses a time-varying weight function which is made
constant, at each iteration, inside a given frequency inter-
val. For that matter, a partially WLS-like and partially
equiripple stopband is achieved along with an equiripple
passband. Efficient implementations of the new method
present computational complezity comparable to minimaz-
based approaches. Examples are included demonstrating the
good results achieved with the proposed scheme.

1. INTRODUCTION

The design of finite-duration impulse response digital fil-
ters is dominated in the literature by the Chebyshev and
the weighted least-squares (WLS) approaches. The Cheby-
shev scheme minimizes the maximum absolute value of a
weighted error function between the prototype’s transfer
function and a given ideal solution. For that reason, Cheby-
shev filters are also said to satisfy a minimax criterion. The
WLS approach, which minimizes the sum of the squares of
the same weighted error function as the minimax approach,
is characterized by a very simple implementation. Its ba-
sic problem, however, results from the well-known Gibbs
phenomenon which corresponds to large error near discon-
tinuities of the desired response.

The universal availability of minimax computer routines
has motivated its spread use in many problems where it is
not the most appropriate solution. In fact, some applica-
tions that use narrow-band filters, like frequency division
multiplexing for communications, do require both the max-
imum stopband attenuation and the total stopband energy to
be considered simultaneously. For these cases, Adams has
shown in [1] that both the minimax and the WLS approaches
are unsuitable as they completely disregard one of these two
measurements when designing nonrecursive digital filters.

For that matter, we propose a new approach for designing
peak-constrained nonrecursive digital filters with low stop-
band energy. The organization of this paper is as follows.
In the next section, the general problem of designing linear-
phase nonrecursive digital filters is presented. In Section 3,
the classical optimization methods for solving the approxim-
ation problem of nonrecursive digital filters are described.
These include the minimax and the WLS approaches, the
Lawson algorithm {2], and the so-called Lim-Lee-Chen-Yang
(LLCY) algorithm [3]. The last two are seen as methods
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that implement the minimax approach through a series of
WLS designs. In Section 4, a new method is given based on
a simple modification of the Lawson or LLCY algorithms,
resulting in an excellent compromise of all good properties
of the minimax and WLS methods.

2. PROBLEM FORMULATION

Consider a nonrecursive filter of length N described by the
transfer function

(N=1)

H(z)=" h(nT)z™" (1)

and assume that N is odd’, k(n) is symmetrical!, and w, =
2w, such that 7' = 1. The frequency response of such filter
is then given by

i (N-1
—=e 7 2

H(e™) “H(w) (2)

where

c
H(w) = Z an cos(nw) 3)
n=0

with ¢ = LN—Z——Q, ao = h(c), and a, = 2h(c — n), for n =
1,...,c. If e7*H(w) is the desired frequency response
and W (w) is a strictly positive weighting function, consider
the weighted error function F(w) defined in the frequency
domain as

E(w) = W(w)[H(w) ~ A(w)] 4)

The approximation problem for linear-phase nonrecursive
digital filters resumes to the minimization of some objective
function of E(w) in such way that |E(w)| < 4, and then

- é

@) - B )] < 77 (%)
Evaluating the weighted error function on a dense frequency
grid with 0 < w; < 7, fori = 1,... , MN, a good discrete
approximation of F(w) can be obtained. Points associated
to the transition band are disregarded, and the remaining
frequencies should be linearly redistributed in the passband
and stopband to include their corresponding edges. Thus,
the following vector equation holds

e=W (h-Ua) (6)

1Other cases of N even and h(n) antisymmetrical can be dealt
with in a very similar way [4] and are not further discussed in
this paper.
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Figure 1. Lowpass filter specifications.

where
e = [B(w1) E(wz) ... E(wgn)]” (7a)
W = diag [W(w1) W(wz) ... W(wgn)] (7b)
h = [H(w1) Hws) ... H(wgn)l? (70)
1 cos{wi)  cos(2wi) cos(cwy)
v=|: o
1 cos(wyry) cos(Ruwpry) ... cos(cwgry)
a=[aa ...a]" (7e)

with M < M, as the original frequencies in the transition
band were discarded.

An ideal lowpass filter is represented in Figure 1, where
6, is the passband maximum ripple, 4. is the stopband min-
imum attenuation, and w, and w; are the passband and stop-
band edges, respectively. Based on these values, define

DB, = 201ogw(1+—‘5”> dB (8a)
1-3,
DB, = 20log,y(6:) dB (8b)

The design of a lowpass digital filter as specified in Figure 1,
using either the minimax method or the WLS approach, is
achieved making the ideal response and weight functions
respectively equal to [4]

Hw) = {1, for 0 < w < wp

0, forws<w<n )
) for 0 <w < wp
W(w) = {6,,/55, forws <w<m (10)

3. CLASSICAL OPTIMIZATION METHODS
3.1. Minimax Approach

Minimax design consists on the minimization over the set
of filter coefficients of the maximum value of |E(w)], i.c.,

| E@) lloe = min max W(@)Hw) - Bl (1)

With the discrete set of frequencies, using equation (7), the
minimax function becomes

Il B(w) ljoo & min max [W[h -~ Ual] (12)
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Figure 2. Lowpass frequency response of minimax-
(dash-dot) and WLS-based (solid) filters.

Referring to Figure 1, the minimax method optimizes
DBs = 20 10g10(5) dB (13)

where § = min[dp, §;]. This problem is commonly solved
with the Parks-McClellan algorithm [5]-[6]. This method
is based on the Reméz exchange routine, the solution of
which can be tested for optimality using the alternation the-
orem as described in [5]. Minimax filters present equiripple
magnitude responses, as depicted in Figure 2 (dash-dotted
curve).

3.2. Weighted Least-Squares Approach

The weighted least-squares (WLS) approach minimizes

1B@IE = [ 1B = [WA@)IHE) - Ao (19
With the discrete frequencies, (14) is approximated by
| Ew) |5 ~ee (15)
the minimization of which is achieved with
a* = (U"W’U) " UTWh (16)

Referring to Figure 1, the WLS approach maximizes the
passband-to-stopband ratio (PSR) of energies

PSR = 10log,, <%) dB (17)

where E, and F, are respectively defined as

Ep=z/ " B (w)Pdw, E3=2/ |H)Pde  (18)
0 w

s

A typical lowpass nonrecursive digital filter designed with
the WLS method is depicted in Figure 2 (solid curve), where
the large ripples near the band edges are easily identified.

3.3. Lawson Algorithm

In 1961, Lawson derived a scheme that performs Chebyshev
approximation as a limit of a special sequence of weighted
least-p (L) approximations with p fixed. As applied to the
nonrecursive digital-filter design problem, the L, Lawson
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Figure 3. Absolute error function B(w) (dash-dot)
and corresponding envelope B.(w) (solid).

algorithm is implemented by a series of WLS approxima-
tions using a time-varying weight matrix Wy, the elements
of which are calculated by [2]

Wisi(w) = Wi (w)Bi(w); with By(w) = |Ex(w)|  (19)
Convergence of the Lawson algorithm is slow and some at-
tempts to accelerate it are described in [2].

3.4. Lim-Lee-Chen-Yang Algorithm
An efficiently accelerated version of the Lawson algorithm
was presented in [3]. The hereby referred to as the Lim-
Lee-Chen-Yang (LLCY) algorithm is characterized by the
weight matrix Wy, recurrently updated by

Wip1(w) = Wi (w)[Bex(w)]° (20)

where 6 is a scalar and Bex(w) is the envelope function of
Bi(w) formed by a set of piecewise linear segments that start
and end at consecutive extremals of Bi(w). Band edges
are considered extremal frequencies, although edges from
different bands should not be connected. In that manner,
labeling the extremal frequencies as w3, for J = 1,2,...,
the envelope function is formed as [3]

(w— wj)Bk(aﬁH) + (“’}+1 — w) By (w})

Bew(w) = (""3+1 - wY)

(21)

for all wy < w < wj,;. Figure 3 depicts typical cases of
the absolute value of the error function (dash-dotted curve),
used by the Lawson algorithm to update its weighting func-
tion, and its corresponding envelope (solid curve), used by
the LLCY algorithm to update its weighting function.

4. A NEW APPROACH

Comparing the adjustments used by the Lawson and LLCY
algorithms, described in (19)-(21) and seen in Figure 3,
with the piecewise-constant weight function used by the
WLS method, one can devise a very simple approach for
designing nonrecursive digital filters that compromise both
minimax and WLS constraints. The new approach consists
of a modification on the weight-function updating proced-
ure in such way that it becomes constant after a particular
extremal of the stopband of Bi(w), i.e.,

Wisi(w) = Wi () [Br(w))’ (22)
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Figure 4. Modified functions for the new approach:
Lawson (dash-dot) and LLCY (solid) versions.

where, for the Lawson and LLCY algorithms, Bx(w) is re-
spectively defined as

. Bi(w), for0<w<w?
Buw) = Bu(w) = { Brlu), r0Se<l (am)

. Bei(w), for0<w <wj
Br(w) = Ber(w) = {Bezgw)}), for wh < w < ;(23b)

where w3 is the J-th extreme value of the stopband of
B(w) = |E(w)|. The passband values of B(w) and Be(w)
are left unchanged in equations (23a) and (23b) to preserve
the equiripple property of the minimax method. An example
of the new approach being applied to the functions seen in
Figure 3 is depicted in Figure 4, where w% was chosen as
the fifth extremal in the filter’s stopband. The parameter
J is the single design parameter for the proposed scheme.
Choosing J = 1, turns the new scheme into an equiripple-
passband WLS design. On the other hand, choosing J as
large as possible, i.e., making w’% = =, turns the proposed
scheme into the Lawson or LLCY algorithms.

The computational complexity of WLS-based algorithms
is greatly reduced when one considers the Toeplitz-plus-
Hankel internal structure of the matrix (U7 W?2U) in (16),
as mentioned in {7], and uses an efficient grid scheme to min-
imize the number of frequency values, as described in [8].
These simplifications make the computational complexity of
WLS-based algorithms comparable to the one for the min-
imax approach. The WLS-based methods, however, do have
the additional advantage of being easily implemented by
simple computer routines.

5. NUMERICAL SIMULATIONS

Example 1: To illustrate the utilization of the proposed
approach, a lowpass filter satisfying [1I] N = 95, DB, =1
dB, wp = 270.0625 rad/s, and w, = 270.0804 rad/s was
designed for all possible values of 1 < J < 42. The res-
ulting plot for DB, and PSR, defined in (8b) and (17),
respectively, is seen in Figure 5. From this figure, one can
easily verify the poor results obtained with the minimax
(J = 42) and WLS-like methods (J = 1), when considering
both figures of merit simultaneously. The transfer function
of the particular case when J = 10 is seen in Figure 6,
from where one can notice the partially WLS-like and par-
tially equiripple (up to its tenth extremal) stopband and
the equiripple passband. These characteristics are typical
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Figure 5. DBs x PSR as functions of J.
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Figure 6. Lowpass frequency response for J = 10.

to the filters designed with the new approach. Both the
Lawson and the LLCY variations were used yielding very
similar results. The LLCY version, however, outperformed
the modified-Lawson approach with respect to convergence
speed, requiring fewer iterations to converge.

Example 2: In this example, a bandpass filter was designed
with the new approach for all distinct values of 1 < J < 23.
The filter specifications were DBp = 1 dB, ws = (7/2 —
0.1) rad/s, wp1 = (7/2 — 0.05) rad/s, wpz = (7/2 + 0.05)
rad/s, ws2 = (/2 4+ 0.1) rad/s, and N = 95. The plot of
D Bsx PSR for this design is shown in Figure 7, from which
one can once more verify the poor performances achieved by
the minimax (J = 23) and the WLS-like (J = 1) algorithms.
The transfer function when J = 10 is seen in Figure 8.

6. CONCLUSION

A simple method for designing nonrecursive digital filters
was presented. The method is based on a modification of
the Lawson and Lim-Lee-Chen-Yang algorithms, forcing the
weight function to -become constant inside a frequency in-
terval. The method’s easy implementation along with the
resulting combination of the minimax and WLS qualities
indicate that it represents a very efficient form of comprom-
ising the stopband’s peak and total energy constraints.
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