Composite Squared-Error Algorithm for Training Feedforward Neural Networks

Dircew Gonzaga,* Marcello L. R. de Campos,t and Sergio L. Netto!

*Departamento de Engenharia Elétrica
Instituto Militar de Engenharia
Praga General Tibtrcio, 80
CEP 22290-270, Rio de Janeiro, RJ - Brazil

Abstract

A new algorithm, the so-called composite squared-
error (CSE) algorithm, for training neural networks is
presented. The CSE algorithm, whose roots lie on the
field of adaptive IIR filtering, is able to avoid subopti-
mal solutions and associated saddle points, thus achiev-
ing lower values of the associated mean-squared-error
function in a fewer number of iterations. For that mat-
ter, the CSE algorithm can regularly outperform other
existing training schemes in most applications where
neural networks are employed.

L. Introduction

Neural networks have been used as an efficient tool
for solving a wide variety of problems in signal process-
ing and control. Feedforward neural networks trained
with the backpropagation algorithm [1] have become
popular in numerous applications. Despite its relative
success, the rate of convergence of the backpropaga-
tion algorithm when used to train multilayer neural
networks is often not satisfactory. Even simple classifi-
cation problems may require long training periods be-
fore convergence is achieved. Poor performance is usu-
ally attributed to the minimization of a nonquadratic
function, possibly multi-modal, by a gradient-type al-
gorithm.

In this article, we explore the great similarities be-
tween feedforward neural networks and their counter-
parts in adaptive filter theory. We propose a compos-
ite algorithm that has faster convergence speed than
the backpropagation algorithm, may achieve a lower
mean-squared output error (MSE) than the fast new
(FN) algorithm presented in [2], and has a computa-
tional complexity only marginally greater than that of
the backpropagation and the FN algorithms. In par-
ticular, we establish a parallel between the backpropa-
gation and FN algorithms with the output error (OE)
and equation error (EE) schemes, respectively, defined
in the field of infinite-duration impulse response (IIR)
adaptive filtering [3]. Hence we are able to employ
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the composite squared-error (CSE) algorithm [4]~[6] for
training neural networks. :

II. Backpropagation Algorithm

The backpropagation algorithm has gained general
acceptance for training feedforward neural networks [1].
The algorithm utilizes a gradient method to update
the weights of a neural network by minimizing the out-
put error €1k, formed by the desired signal dp,;, j for
the corresponding training-pattern signal z,g,%, and
the signal at the output layer of the network, zp .k
(see Figure 1). The error is directly used to update
the weights of the output layer and it is propagated
back to the hidden layers of the network in order to
update these weights. For the sake of simplicity and
brevity we only state the equations involved, and we
refer the reader interested in a more complete discus-
sion on the method to the many references treating the
subject (see, e.g., [1]).

Figure 1: Modified neuron structure
layer.

for the output

At the n-th iteration and p-th pattern, the i-th
weight of the k-th neuron of the I-th (output) layer



is updated as
w(n + 1)Lk = W(N) L,k + Hep,L kTp,L—1,i
+ 0w —wn - Vrx:] (1)

where (4 is the step-size, 7 is the momentum gain, ;1 ;
denotes the output signal of the i-th neuron of the L-th
layer. The output error is calculated as

)

where y, .x denotes the signal at the output of the
summation node, and f’(-) is the first derivative of f(-).
For the j-th (hidden) layer, the i-th weight is updated
as

ep,.Lk = f'(Up,Lx) [f(dp,L k) — Tp,L.k]

w(n + 1)jk,i = W(N)jk,i + Hep,jkTp,i—1,i

+nlw(n)jr: —wln — k] (3)
with the error calculated as
k
€pik = F'(Upik) Y €pit1,iWit1ik 4
=1

wjt1,4,5 refers to the k-th weight of i-th neuron of the
(4 + 1)-th layer.

III. Fast New Algorithm

The nonquadratic objective function minimized by
the backpropagation algorithm arises due to the nonlin-
ear operator, f(-), placed after each summation node.
This nonlinearity may generate local minima and as-
sociated saddle points that cause slow convergence.
As shown in Fig. 1, by means of using the inverse of
the nonlinear operator, a linear error e, ; ; with re-
spect to the weights of the output layer may be con-
structed yielding a quadratic objective function to be
minimized. If, for simplicity, momentum is not consid-
ered, the output-layer weights are updated using this
linearized error as [2]

w(n + Vs = w(n)r ki
(5)

whereas the hidden-layer weights are updated using the
nonlinear error backpropagated according to (3) and
(4). Although one may argue that the error minimized
is still nonlinear with respect to the weights in the hid-
den layers, several simulations have shown prospective
improvement in convergence speed if (5) is used in con-
junction with (3) and (4). This may suggest that the
influence of the hidden layers on the shape of the ob-
jective function minimized by the network is not as
significant as the influence of the output layer.

+ p(dp, L.k — Yp,L,k)Tp,L—1,i

117

In [2], the authors claim that once the error at the
output of the neural network has been reduced to zero,
the modified structure has converged to the global min-
imum. Although indisputably true, zero output error
may not be achievable due to noise, incorrect modeling,
or too-short training periods. In this case, the solution
obtained after completing the training period is biased
and a low linearized error €, ; , may not correspond to
a low output error e, 1, as originally claimed.

IV. Composite Squared-Error Algorithm for Adaptive
Filtering

An adaptive filter is similar to a neural network in
the sense that both systems rely on a numerical algo-
rithm to adjust their corresponding coefficients in order
to satisfy some prescribed optimization criterion. The
main difference between the two approaches relies on
the basic structure being updated. In fact, while a neu-
ral network consists of nonlinear neurons interconnect
through a series of adders, an adaptive filter consists of
a linear digital filter, the coefficients of which are made
variable in time. In its most general form, an adap-
tive filter is described by a time-varying input-output
relationship of the form:

- B,(q R A i
Hn(Q)= An(Q) — 0,n - N,nd — (6)
CAp(q) 1HauagTt + ...t anag
where N is the filter order, g¢[] is the unit-

delay operator defined by g¢{zn] = zn-1, and
bo,ns--- 3BNn;G1yms-- - ,GN,n are the adaptive coeffi-
cients. For this type of adaptive filter, the two most
widely known adaptation algorithms are the output er-
ror (OE) and equation error (EE) algorithms. '

The OE algorithm is based on the error signal, eog »,
between the filter output and the refence signal. For
that matter, the OE scheme represents the adaptive
filter counterpart of the backpropagation algorithm for
neural networks.

On the other hand, the EE algorithm is based on an
alternative error signal, egg n, defined as

(7

where A, (q) is the adaptive filter’s denominator poly-
nomial. Then we may consider the EE algorithm as
the adaptive filter analogous of the FN algorithm for
neural networks.

With respect to convergence properties, the MSE
funtion associated to the OE algorithm is characterized
by the possible existence of local minima and an unbi-
ased global minimum. Meanwhile, the MSE function
for the EE algorithm represents a quadratic function
whose unique optimal solution may be biased, when

€EE,n = fin (9)leoE,n]



compared to the OE global solution, due to the pres-
ence of modeling/measurement noise in the desired out-
put signal. The convergence properties for the OE and
EE schemes seem to indicate that an ideal approach
approximates the EE convergence behavior in the ini-
tial part of the adaptation process and progressively
converts itself .to become identical to the OE scheme.
This methodology is achieved, for instance, with the so-
caled composite squared-error (CSE) algorithm which
is based on the alternative error signal defined as:

62CSE,n = ’Ye%'E,n + (1 - 7)620147,11 (8)

where v is the composition parameter restrained to the
interval v € [0, 1].

In the next section, we make use of this composition
concept, by combining the backpropagation and FN
algorithms, thus deriving the CSE algorithm.

V. Composite Squared-Error Algorithm for Neural
Networks

We propose the use of a composite algorithm [4]-{6]
which employs the linear error during the initial part
of the training period, after which the nonlinear error
is used. This approach has the advantage of improving
convergence speed and of reducing the risk of conver-
gence to a biased solution.

In the proposed method, the structures shown in
Figs. 1 and 2 are used in the first phase of the train-
ing period and the linear error e, ; , is used to update
the weights of the output layer. In the second and fi-
nal phase of the training period, the nonlinear error
ep,Lx 15 used to update the weights, characterizing an
ordinary feedforward neuron structure for hidden and
output layers. Convergence in the first phase is usu-
ally fast even when the backpropagation algorithm is
used. The second part of the training is necessary to
remove bias eventually caused by measurement noise,
inadequacy of the network employed, or both.

()

Figure 2: Neuron structure for the hidden layer.

The switch from one updating scheme to the other
may be abrupt resulting in two distinct phases, or the
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updating scheme may employ the composite squared
error given by [4]-[6]

(9

which results in an updating equation for the weights
of the output layer of the form

=7 s+ 1 —"e L,

win + Vg ks =wn)r e

+7Alinw(n)L,k,i +(1- ’Y)Anonw(n)L,k,i (10)

where
Apnw(n)L ki = i(dp,L.k — Yp,L.k)%p,L-1,i (11)
Anonw(N)L ki = Wep L kTpL—1,i (12)

Parameter v is changed from the initial value v = 1
to the final value v = 0, according to, for instance, a
gradient-type algorithm [4]~[6]

v(n)—a (e;,L,k)z - e;,L,k )

Yn+1)= ifyn+1)>0  (13)

g, otherwise

VI. Simulation Results
Several simulations were performed for classical
problems in function approximation and system iden-
tification employing the backpropagation algorithm,
the NF algorithm, and the CSE algorithm proposed
here. In all simulations we used equations (10)-(13)
to gradually change from adptation using the linear
error to adaptation using the nonlinear error. We also
performed training in batch mode without momentum
update and used the hyperbolic tangent function as

the nonlinear activation function f(-).

Ezample 1: XOR Problem

In this example a neural network consisting of 2 neu-
rons in the first layer and 1 neuron in the output layer
was used to implement the classical problem where
the output signal must be an exclusive-OR operation
onto the inputs. Adaptation parameters were set as
= 0.1 for all algorithms compared. Adaptation of
for the CSE, following equation (13), used a step-size
a = 0.002. Fig. 3 shows the MSE for 1000 epochs for
the backpropagation, FN, and CSE algorithms. We can
clearly verify the superior performance of the proposed
method with respect to the other two methods in term
of speed of convergence and MSE.

Ezample 2: Function Approzimation

A hypothetical function was approximated by a neu-
ral network with 1 layer, with 1 neuron and 1 weight,
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Figure 3: MSE convergence for the XOR problem.

and bias. Abscence of hidden layers implies a purely
quadratic objective function for the first phase of adap-
tation, i.e., when v = 1. The adaptation parameters
were set as u = 0.005 for all algorithms and a = 0.002
for the adaptation of +y in the CSE algorithm. Fig. 4
shows the MSE for 600 epochs of the backpropagation,
FN, and CSE algorithms. Clearly, the FN algorithm
presented fast initial convergence, but a high steady-
state MSE, which probably characterizes convergence
t0 a local minima. The backpropagation algorithm pre-
sented low stady-state MSE, but a very slow initial
convergence, likely due to a flat region in the objec-
tive function. Meanwhile, the CSE algorithm presented
very fast convergence and a low final MSE. Figures 5—
8 show the MSE contour with respect to the weight
and the bias for different epochs, which clearly shows
the gradual modification of the objective function min-
imized by the CSE algorithm, starting as a quadratic
function at epoch 0 and finishing as a very nonlinear
function at epoch 600.

Ezample 3: System Identification

In this example a network with 11 neurons in the first
layer, 3 neurons in the second layer, and 1 neuron in
the last layer was used to identify an unknown plant
described by the following transfer function:

0.05 — 0.4z~
1 - 0.0003z—1 — 0.689152~2

H(z)=

A step-size u = 0.001 was used for the backpropagation
algorithm and for the CSE algorithm, whereas p =
0.0001 was used for the FN algorithm. Adaptation of v
employed a step-size a = 0.005 for the CSE algorithm.
The parameters were empirically chosen for the fastest
convergence of each algorithm. Fig. 9 shows clearly
the superior performance of the CSE algorithm when
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Figure 4: MSE convergence for the function-
approximation problem.
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Figure 5: Contour for the function approximation-
problem at the start of adaptation.

compared with the other two algorithms, even for a
relatively complex neural network. As a matter of fact,
the CSE converged faster and attained a lower level of
MSE after convergence than the two other algorithms
considered.

VII. Conclusions

In this article, a new algorithm for neural network
training was presented. In the several simulations car-
ried out, the proposed algorithm converged faster than
the conventional backpropagation algorithm with sim-
ilar computational complexity. This seems to indicate
that saddle points are avoided along with the accom-
panying flat regions often responsible for slow conver-
gence. Convergence to a global minimum was also regu-
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Figure 6: Contour for the function approximation-
problem during adaptation.

Figure 7: Contour for the function approximation-
problem durig adaptation.

larly verified, thus illustrating an evident improvement
over other training methods found in the neural net-
work literature.
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