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ABSTRACT: An approach for approximating infinite-
duration impulse response (IIR) digital filters is proposed.
The method is able to compromise maximum stopband at-
tenuation and minimum stopband energy requirements. The
approach is based on the weighted-least-squares (WLS)
method with a weight function which is made constant
within a given frequency interval at each iteration. In that
sense, IIR digital filters with partially WLS-like and par-
tially equiripple stopbands are efficiently designed.

1. INTRODUCTION

The Chebyshev and weighted-least-squares (WLS) meth-
ods are two well-known approaches for approximating - di-
~ gital filters. The Chebyshev scheme minimizes the max-

imum absolute value of a weighted error function between
" the prototype’s transfer function and a given ideal solution.

For that reason, the Chebyshev scheme is also referred to
as the minimax approach. The WLS approach, which min-
imizes the mean-squared-value of the same weighted error
function as the minimax approach, is characterized by a very
simple implementation. Its basic problem, however, is the
resulting Gibbs oscillations which correspond to large error
near discontinuities of the desired response.

Some practical applications that use narrow-band filters,
like frequency division multiplexing for communications, do
require both the maximum stopband attenuation and the
total stopband energy to be considered simultaneously. For
these cases, Adams has shown [1] that both the minimax
and the WLS approaches are unsuitable as they completely
disregard one of these two measurements in their design
procedure. For that matter, we propose a new approach for
designing peak-constrained IIR digital filters with low stop-
band energy. For all practical purposes, the present work
extends the results in [2] to the IIR case. In that sense, in
Section 2, the general problem of designing IIR digital filters
is presented. In Section 3, some classical optimization meth-
ods for solving that approximation problem are described.
In Section 4, a new method is given resulting in an excel-
lent compromise of all good properties of the minimax and
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WLS methods. Section 5 includes computer experiments
demonstrating the good results achieved with the proposed
method. .

2. PROBLEM FORMULATION

Consider an IIR filter of order N described by the transfer
function
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The frequency response of such filter is
CH(E) = ejé("’)ﬁ(w) (2)

where §(w) and H (w) are the phase and magnitude re-
sponses of H (e’“), respectively, defined as

A = tan~! Im[ﬁ(ejw)] o
fu) =t {Re[f{(ef”)] } (32)
Aw) = |H(e) (3b)
If the desired frequency response is given by
Hy(e?) = 0@ ﬁd(w) (4)

where f4(w) and Ha(w) are defined similarly to §(w) and
H(w) in (3), and W{w) is a strictly positive weighting func-
tion, consider the weighted error function £(e’“) defined in

the frequency domain as
B(e) = W(w) [Au(e) — ()] Q

The approximation problem for IIR digitai filters resumes
to the minimization of some objective function of E{e’“) in
such way that [F(e’“)| < 4, and then

[fld(ei‘") — B(e*)

)
< Wiay (6)

The error in (5), however, leads to a nonlinear optimization
problem, and hence it is convenient to define an auxiliary
error function as

Es(e’) = W(w) [fzd(eW) - H(ef“)]

W(w) [Hae)AE) - BE)] ()



Evaluating this auxiliary error function on a dense frequency
grid with 0 < w; < m,fori=1,... ,M x N, a good discrete
approximation of Ep(e’) can be obtained. Points associ-
ated to the transition band are disregarded, and the remain-
ing frequencies should be linearly redistributed in the pass-
band and stopband to include their corresponding edges.
Thus, the following vector equation holds
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with C < M x N, as the original frequencies in the transition
band were discarded.

An ideal lowpass filter is represented in Fig. 1, where §, is
the passband maximum ripple, §. is the stopband minimum
attenuation, and wp and w, are the passband and stopband
edges, respectively. Based on these values, define
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Figure 1. Typical lowpass filter specifications.

DB, = 20log,, (1 +;”> dB (10a)
—p
DB = 20log,,(:) dB (10b)

The design of a lowpass digital filter as specified in Fig. i,
using either the minimax method or the WLS approach, is
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Figure 2. Lowpaés frequency response of minimax-
(dash-dotted) and WLS-based (solid) filters.

achieved making the ideal response and weight functions
respectively equal to (3]

_J L 0fw<w
H(w)—{q T (11)
(1, 0<w<w
W(“)‘{ap/as, wi<w<n (12)

3. OPTIMIZATION APPROACHES

3.1 Chebyshev Method
Chebyshev design consists on the minimization over the set
of filter coefficients of the maximum value of |E(e*)], i.e.,

(™) loo = min max W (w)| Ha(e)~H(e™)|  (13)
Referring to Fig. 1, the minimax method optimizes
DBs = 201log,,(5) dB | (14)

where § = min[d,,d.]. A characteristic of minimax filters

is their equiripple magnitudé responses [4] as depicted in
Figure 2 (dash-dotted curve).

3.2 Weighted-Least-Squares Method
The weighted least-squares (WLS) approach based on the
auxiliary error defined in (6) minimizes

| Be(e) Iz = [ W2 ()| Bale™)~ ()
0
= / W ()| Ha(e) A(e™ )~ B(e7) 2dw(15)
0
With the discrete frequencies, (15) is approximated by

I E) Il ~ &% (16)



where ¥ denotes the conjugate-transpose operator. The
minimization of such function is achieved with

a’ = [Re(ﬂH)WRe(fJ) + Im(ﬁH)WIm(ﬂ)] -
(17)

Referring to Fig. 1, the WLS approach effectively maximizes
the passband-to-stopband ratio (PSR) of energies

wp 772
PSR = 10log, E—M dB
fws H?(w)dw

A typical lowpass digital filter designed with the WLS
method is depicted in Figure 2 (solid curve), where the large
ripples near the band edges are easily identified.

[Re(T%)WRe(h) + Im(U %) Wn(h)]

(18)

3.3 Lawson Method

In 1961, Lawson derived a scheme that performs Chebyshev
approximation as a limit of a special sequence of weighted
least-p (Lp) approximations with p fixed. For instance, the
L, Lawson algorithm is implemented by a series of WLS
approximations using a time-varying weight matrix W, the
elem?ents of which are calculated by [5]

WEo () = WE () Ba(w) (19)
with Bi(w) = |Ex(w)|, where Ex(w) is an auxiliary error
function defined as

Bu(w) = Wa(w) [|Hale™)| = 1H()]] (20)

3.4 Lim-Lee-Chen-Yang Method

An efficiently accelerated version of the Lawson algorithm
was presented in [6]. The hereby referred to as the Lim-
Lee-Chen-Yang (LLCY) algorithm is characterized by the
weight matrix Wy recurrently updated by

Wie () = Wh(w) Bex(w) (21)

where Bei(w) is the envelope function of By (w) formed by
a set of piecewise linear segments that start and end at con-
secutive extremals of Bi(w). Band edges are considered
extrehlal frequencies, although edges from different bands
shoulH not be connected. In that manner, labeling the ex-
tremﬁ;.l frequencies as w%, for J = 1,2,..., the envelope
function is formed as [6]

(w—w3)Br(why )+ (Wi —w) Be(w5)
(“’fm—“’;)

Bex(w)= (22)

for all Wy € w < wjyy.

Figure 3 depicts typical cases of the absolute value of

the error function (dash-dotted curve), used by the Lawson
algorithm to update its weighting function, and its corres-
pondii@ng envelope (solid curve), used by the LLCY algorithm
to update its weighting function.
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Figure 3. Absolute error function B(w) (dash-dot)
and corresponding envelope B.(w) (solid).

4. A NEW APPROACH

Comparing the adjustments used by the Lawson and
LLCY algorithms, described in (19)-(22), with the
piecewise-constant weight function used by the WLS
method, one can devise a very simple approach for designing
IIR digital filters that compromise both minimax and WLS
constraints. The new approach consists of a modification
on the weight-function update in such way that it becomes
constant after a particular extremal w’ of the stopband of
By (w), i.e.,

Wis1(w) = Wi (w)Bk(w) (23)
where, for the Lawson and LLCY algorithms, SBx(w) is re-
spectively defined as

- B 0 .
Bi(w) = Br(w) = {B'Lﬁii) w,S:f:; (242)
-~ B w *
Bi(w) = Be(w) = { BZ:E:)J) S)i E;; (24b)

The passband values of Bi(w) and Bex(w) are left un-
changed in (24a) and (24b) to preserve the equiripple prop-
erty of the minimax method. An example of the new ap-
proach is depicted in Fig. 4, where w3 was chosen as the
fifth extremal in the filter’s stopband. The parameter J is
the single design parameter for the proposed scheme. Choos-
ing J = 1, turns the new scheme into an equiripple-passband
WLS design. On the other hand, choosing J as large as pos-
sible, i.e., making wj = 7, turns the proposed scheme into
the Lawson or LLCY algorithms.

5. COMPUTER SIMULATIONS



Figure 4. Modified weight functions for the new ap-
proach: Lawson (dash-dot) and LLCY (solid) ver-
sions.

Example 1: The proposed method is used to design an
I1R filter specified as

—]Tsw

H(e) = { g (25)

with 7 == 12, N = 6 and DBp = 1.00 dB. The case when
J =3, which is equivalent to the equiripple solution, resul-
ted in DBs = —53.6 dB and a PSR = 49.1 dB. For J = 2,
a good compromise between the figures of merit DBs and
PSR could be achieved as their resulting values were —50.9
dB and 51.8 dB, respectively.

The resulting magnitude and group-delay responses for
these two cases are shown In Fig. 5 and Fig. 6, with J =3
(solid) and J = 2 (dash-dotted), respectively. Fig. 5 shows
for these two cases a clear trade-off between the DBs and
PSR figures of merit. In fig 6, notice how close the delay
is in both cases to the specified value 7. = 12 within the
filter’s passband. :
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Figure 5. Ex. 1 - Magnitude responses (passband
in detail) when J =3 (solid) and J = 2 (dotted).
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Figure 6. Ex. 1 - Group-delay responses (passband
in detail) when J =3 (solid) and J = 2 (dotted).

6. CONCLUSION

A simple method for designing IIR digital filters was
presented. The method is based on a modification.of the so-
called Lawson and Lim-Lee-Chen-Yang algorithms, forcing
the weight function to become constant inside a frequency
interval. The method’s easy implementation along with the
resulting ' combination of the minimax and WLS qualities
yield an excellent compromise of the stopband’s peak and
energy requirements.
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