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Abstract: An approach for approximating nonrecurs-
ive digital filters with arbitrary phase is proposed. The
method compromises maximum stopband attenuation and
minimum stopband energy. The approach is based on a
time-varying weight function which is made constant, at
each iteration, inside a given frequency interval. In that
sense, a partially WLS-like and partially equiripple stop-
band is achieved.

1. Introduction

The design of nonrecursive digital filters is dominated in
the literature by the Chebyshev and the weighted least-
squares (WLS) approaches. The Chebyshev scheme min-
imizes the maximum absolute value of a weighted error
function between the prototype’s transfer function and
a given ideal solution. For that reason, the Chebyshev
scheme is also referred to as the minimax approach. The
WLS approach, which minimizes the mean-squared-value
of the same weighted error function as the minimax ap-
proach, is characterized by a very simple implementation.
Its basic problem, however, is the resulting Gibbs oscilla-
tions which correspond to large error near discontinuities
of the desired response.

Some practical applications that use narrow-band fil-
ters, like frequency division multiplexing for communic-
ations, do require both the maximum stopband attenu-
ation and the total stopband energy to be considered sim-
ultaneously. For these cases, Adams has shown [1] that
both the minimax and the WLS approaches are unsuit-
able as they disregard one of these two measurements in
their design procedure. For that matter, we propose a
new approach for designing peak-constrained nonrecurs-
ive digital filters with low passband-to-stopband energy
ratio. The present work extends the results in [2] to the
arbitrary-phase case. For that matter, in Section 2, the
general problem of designing nonrecursive digital filters is
presented. In Section 3, the classical optimization meth-
ods for solving that approximation problem are described.
In Section 4, a new method is given resulting in an ex-
cellent compromise of all good properties of the minimax
and WLS methods. Section 5 includes computer experi-
ments demonstrating the good results achieved with the
proposed method.

2. Problem Formulation

Description of the approximation problem of an arbitrary-
phase nonrecursive digital filter is a bit. distinct from
the linear-phase case, thus requiring a notation system
slightly different from the one used in [2]. In fact, con-
sider a nonrecursive filter of length N described by the
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transfer function

N-1

H(2) =Z h(nT)z™"

n=0

(1)

and assume that w, = 27, such that T' = 1. The frequency
response of such filter is then given by

N-1
H(™) =E h(n)e 74" = e"jé(w)ﬁ(w) (2)

where §(w) and H(w) are the phase and magnitude re-
sponses of H(e’“) respectively defined as

- (Y
fi(w) = |H()| (3b)
If the desired frequency response is given by
Ha(e™) = 7% Ha(w) (4)

where f4(w) and Ha(w) are defined similarly to d(w) and
H(w) in (3), and W(w) is a strictly positive weight-
ing function, consider the weighted error function E(e’“)
defined in the frequency domain as

E(e) = W(w) [Ha(e™) - H(e™)] ©)

The approximation problem for nonrecursive digital filters
resumes to the minimization of some objective function of

E(e’*) in such way that |E(e’)| < 4, and then

g
W(w)

|Hu(e?) - H(e*)| < (6)

Evaluating the weighted error function on a dense fre-
quency grid with 0 < w; < m,forz=1,... , M x N, a
good discrete approximation of E(e’“) can be obtained.
Points associated to the transition band are disregarded,
and the remaining frequencies should be linearly redis-
tributed in the passband and stopband to include their

corresponding edges. Thus, the following vector equation
holds

6=Ww (h-TUa) (7)
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where

& = [E(eiwl) E‘(ejwé)]T (8a)
W = diag [W(w1) ... W(we)] (8b)
h= [_ff(em) ﬁ(ef‘”é)]T (8)
1 e« e~ N
~ 1 e™7“2 e~ NI
U= (8d)
i e"j“"5 . e_Njwc
a=[hr0) ... h(N—-1)7 (8e)

with C < M x N, as the original frequencies in the trans-
ition band were discarded.

An ideal lowpass filter is represented in Fig. 1, where
dp is the passband maximum ripple, §. is the stopband
minimum attenuation, and w, and w, are the passband
and stopband edges, respectively. Based on these values,
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Figure 1: Typical lowpass filter specifications.
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define

DB,

(9a)

20logm(1t?’) B
P

DB, = 20log,,(d:) dB (9b)

The design of a lowpass digital filter as specified in Fig. 1,
using either the minimax method or the WLS approach, is
achieved making the ideal response and weight functions
respectively equal to [5]

1, 0<w<w

H(w) = 0, ws SwS; (10)
1, 0<w<w

we) = {5, 0555w

3. Optimization Approaches

3.1 Chebyshev Method
Chebyshev design consists on the minimization over the

set of filter coefficients of the maximum value of [E(e?)),
Le.,

1) oo = min max W ()| Ha(e™) - H(*) (12)

With the discrete set of frequencies, using equation (8),
the minimax function becomes

- i . ;-
[ E(e") oo = m;noét}u?é"Wlh Ua|

(13)
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Referring to Fig. 1, the minimax method optimizes

DB;s = 20log,,(6) dB (14)
where § = min[d,,d,]. A characteristic of minimax filters
is their equiripple magnitude responses [6].

3.2 Weighted-Least-Squares Method
The weighted least-squares (WLS) approach minimizes

I B() 2 = /0 "W ()| Ha(e) ~ H()Pdw  (15)

With the discrete frequencies, (15) is approximated by

| B(e) |3 ~ &6 (16)
where ¥ denotes the conjugate-transpose operator. The
minimization of such function is achieved with

a* = [Re(0") W Re(0) + Im(U") W Im(0)]
[Re(fJH) W Re(h) + Im(T%) W Im(ﬁ)] (17)

Referring to Fig. 1, the WLS approach maximizes the
passband-to-stopband ratio (PSR) of energies

K (w)dw) 4B

JI B (w)dw (18)

PSR =10log,, (

3.3 Lawson Method
In 1961, Lawson derived a scheme that performs Cheby-
shev approximation as a limit of a special sequence of
weighted least-p (Lp) approximations with p fixed. As
applied to the nonrecursive digital-filter design problem,
the L, Lawson algorithm is implemented by a series of
WLS approximations using a time-varying weight matrix
‘W, the elements of which are calculated by [3
Wi (w) = Wi (w) Bi(w) (19)
with Bk(w) = | Ex(w)], where Ej(w) is an auxiliary error
function defined as
Ei(w) = Wi(w) [|Ha(e)| - | ()] (20)
The method based on the modified error E‘k(w) consist-
ently outperformed the scheme based on the original error
given in (5), with respect to the algorithm’s stability and

the characteristics of the final solution, as illustrated in
Ex. 3 below.

3.4 Lim-Lee-Chen-Yang Method |
An efficiently accelerated version of the Lawson algorithm
was presented in [4]. The hereby referred to as the Lim-
Lee-Chen-Yang (LLCY) algorithm is characterized by the
weight matrix Wy recurrently updated by
Wiy1(w) = Wi (w)Bex(w) (21)
where Bex(w) is the envelope function of Bx(w) formed
by a set of piecewise linear segments that start and end
at consecutive extremals of Bi(w). Band edges are con-
sidered extremal frequencies, although edges from differ-
ent bands should not be connected. In that manner, la-
beling the extremal frequencies as w3, for J = 1,2,...,
the envelope function is formed as {4]

_ (w—w5)Br(wi )+ (Wi —w)Br(w))

(“’3+1 —w})

Beg(w) (22)



for all wh < w < why,.

4. A New Approach

Comparing the adjustments used by the Lawson and
LLCY algorithms, described in (19)-(22), with the
piecewise-constant weight function used by the WLS
method, one can devise a very simple approach for design-
ing nonrecursive digital filters that compromise both min-
imax and WLS constraints. The new approach consists
of a modification on the weight-function update in such
way that it becomes constant after a particular extremal
w5 of the stopband of Bx(w), i.e.,

WZ—H(“") = le(‘”)ﬂk(‘”)

where, for the Lawson and LLCY algorithms, Bkx(w) is
respectively defined as

(23)

Br(w) = By(w) = {g:gz)}’)’ g;:‘f;; (24a)
Br(w) = Bex(w) = { g?’:gg%’% 3? e S‘“;r (24b)

The passband values of Bi(w) and Bex(w) are left un-
changed in (24a) and (24b) to preserve the equiripple
property of the minimax method. An example of the new
approach is depicted in Fig. 2, where w’ was chosen as
the fifth extremal in the filter’s stopband. The parameter
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Figure 2: Examples of weight functions defined by
the new approach.

J is the single design parameter for the proposed scheme.
Choosing J = 1, turns the new scheme into an equiripple-
passband WLS design. On the other hand, choosing J as
large as possible, i.e., making w} = m, turns the proposed
scheme into the Lawson or LLCY algorithms.

5. Numerical Simulations
Example 1: The proposed method is used to design a
nonrecursive filter specified as [7]

b dw - 0.12x
H( )z{o, w<m (25)

INIA

0
0.24

with 7o = 12, N = 31 and 6,/6: = 10. The case when
J = 14, which is equivalent to the equiripple solution,
resulted in §, = 0.03538 and . = 0.003536. These values
are considerably better than the results mentioned in [7].
Using J = 3, we obtain é, = 0.04427 and §. = 0.004423,
which are comparable to the results in {7], with an addi-
tional 3.2 dB for the PSR.
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The resulting magnitude and group-delay responses are
shown in Fig. 3 and Fig. 4, with'J = 3 (solid) and J = 14
(dash-dotted), respectively. Notice how close the delay is
in both cases to the specified value 7. = 12 within the
filter’s passband.
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Figure 3: Ex. 1 - Magnitude response (passband in
detail) when J = 3 (solid) and J = 14 (dash-dotted).
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Figure 4: Ex. 1 - Group-delay response when J = 3
(solid) and J = 14 (dash-dotted).

Example 2: The approximation of arbitrary-phase non-
recursive filters require that both the desired magnitude
and phase responses to be specified. If, however, only the
magnitude response is given, a minimum-phase response
can be derived using the Hilbert transform, as described
in [8]. This approach was used here to design a low-
pass filter defined by wp, = 0.4 rad/s, w, = 0.6 rad/s,
N =71, DBp =1dB, and DBs = —30 dB. The desired
(dash-dotted) and obtained (solid) magnitude and phase
responses are shown in Fig. 5 and Fig. 6, respectively. No-
tice that the magnitude response satisfies the prescribed
specifications and the obtained phase response coincides
with the desired one within the filter’s passband, for all
practical purposes.

Example 3: To illustrate how the modified error defined
in (20) results in a better scheme than the error defined
in (5), the two arbitrary-phase filters described in Ex. 1
and Ex. 2 were approximated using these two error
functions. Convergence of each scheme was monitored
through the D Bp measurement as depicted in Fig. 7 and
Fig. 8, respectively. For the filter given in Ex. 1, when
N = 35 the modified error clearly converged to a filter
with smaller passband ripple, whereas for other values of
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Figure 5: Ex. 2 - Magnitude response (passband in
detail).
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Figure 6: Ex. 2 - Desired (dash-dotted) and obtained
(solid) phase responses.

N both schemes yielded similar results. For the filter in
Ex. 2, however, -the modified error consistently outper-
formed the original error, which presented a somewhat
erratic convergence.
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Figure 7: Ex. 3 - DBp convergence for the design in
Ex. 1 with N = 27, 31, 35 using the modified (‘o’)

and the original (‘x’) error functions.

6. Conclusion
A simple method for designing nonrecursive digital filters
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Figure 8: Ex. 3 - DBp convergence for the design in
Ex. 2 with N = 67, 71, 75 using the modified (‘0’)
and the original (‘x’) error functions.

with arbitrary phase was presented. The method is based
on a modification of the Lawson and Lim-Lee-Chen-Yang
algorithms, forcing the weight function to become con-
stant inside a frequency interval. The method’s easy im-
plementation along with the resulting combination of the
minimax and WLS qualities indicate that it represents a
very efficient form of compromising the stopband’s peak
and energy constraints.
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