ON WLS-CHEBYSHEYV IIR DIGITAL FILTERS

Sergio L. Netto and Paulo S. R. Diniz

sergiofn@eps.ufry.br - diniz@ps.ufrj.br
Programa de Engenharia Elétrica - COPPE/DEL-EE

Universidade Federal do Rio de Janeiro

C.P. 68504 - RJ - 21945-970 - BRAZIL

ABSTRACT: A method for approximating infinite-
duration impulse response (IIR) digital filters is given. The
method is able to compromise maximum stopband attenua-
tion and minimum stopband energy requirements. The pro-
posed approach performs a series of weighted-least-squares
(WLS) iterations, with a weight function which is made
constant within a given frequency interval at each itera-
tion. The highly nonlinear problem characteristic of IIR fil-
ter design is pseudo-linearized using the Steiglitz-McBride
formulation. As a result, IIR digital filters with partially
WLS-like and partially equiripple stopbands are efficiently
designed.

1. INTRODUCTION

The Chebyshev and weighted-least-squares (WLS) meth-
ods are two well-known approaches for approximating digi-
tal filters. A characteristic of the Chebyshev scheme is the
minimization of the maximum absolute value of a weighted
error function between the resulting transfer function and
a given ideal response. Solution of the Chebyshev prob-
lem is commonly performed with routines which are very
computationally demanding. Meanwhile, the WLS ap-
proach, which minimizes the mean-squared-value of the
same weighted error function as the Chebyshev method,
is characterized by a very simple implementation. Its main
disadvantage, however, is the resulting Gibbs oscillations
which correspond to large error near discontinuities of the
desired response.

Some practical applications that use narrow-band filters,
like frequency division multiplexing for communications, do
require both the maximum stopband attenuation and the
total stopband energy to be considered simultaneously. For
these cases, Adams has shown [1] that both the minimax
and the WLS approaches are unsuitable, as their design
solutions completely disregard one of these two measure-
ments. For that matter, a new approach is proposed for
designing peak-constrained IIR digital filters with low stop-
band energy. The present work extends the results in [2]
and [3] to the IIR case using an alternative definition for
the error function. In fact, here the design problem of IIR
digital filters is described using the Steiglitz-McBride for-
mulation [4], [5] that yields a pseudo-linearized optimiza-
tion problem. The resulting method is then characterized
by an extremely simple implementation based on a series of
WLS designs with a different weight function at each iter-
ation. These weighting functions are made constant for a
given frequency interval resulting in a very good compro-
mise between the characteristics of the WLS and Chebyshev
solutions.

This paper is organized as follows: In Section 2, the gen-
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eral problem of designing IIR digital filters is presented. In
Section 3, some classical optimization methods for solving
that approximation problem are described. In Section 4,
the new method is given yielding a good compromise be-
tween the stopband’s minimum attenuation and total en-
ergy. Section 5 then includes filter designs illustrating the
good results achieved with the proposed approach.

2. IIR PROBLEM FORMULATION

Consider an IIR filter of order NV described by the transfer
function
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The frequency response of such filter is
H(e) = ) A (w) 2)

where é(w)ﬁand H(w) are the phase and magnitude re-
sponses of H(e’*), defined as

i(w) = tan~! Im[H (e*)]
fw) = ¢ {—__Re[f{(ejw)]} (3a)

Hw) = ]fl(ej“’) (3b)

respectively. We can then write the desired frequency re-
sponse as

f]d(ej“) = ejé"(“)f[d(w) (4)

where 64(w) and Hy(w) are defined similarly to §(w) and
IEI (w) in (3). In addition, we define the error function
E(e’”) as

B(™) = W(w) [Ha(™) - B(e)] (5)

where W{w) is a strictly positive weighting function. The
approximation problem for IIR digital filters thus is reduced
to the minimization of some objective function of E(e’*) in
such way that |E(e’*)| < 8, and then

)
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The error function in (5), however, leads to a nonlinear
optimization problem, and hence it is convenient to use an
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alternative error function. In [3] a definition corresponding
to the equation error (EE) scheme was employed. However,
it is well known in the adaptive filtering literature that the
EE approach may lead to unstable solutions in problems of
system identification when in the presence of measurement
or modeling additive noise. Such behavior also occurred
in [3] when the EE scheme was used in the filter design set
up. For that matter, in here we choose the error at the k-th
iteration defined as

Esmu(e”) =W(w );{%

W(w) Ta (jwyir ey B (0w
_m[Ak(e YHa(e*) — Bi(e )](7)

[ffd(ej“’) - f{k(ej‘”)]

This error formulation corresponds to the Steiglitz-McBride
{SM) approach, which was originally devised to the prob-
lems of system identification and continuous-time filter de-
sign [4], [5], but has also been applied to design digital fil-
ters based on the WLS method [6]. Such choice was based
on the fact that the SM approach is less affected by the
problem of unstable solution than the EE scheme. Other
additional modifications are currently being considered to
further improve the convergence properties of the overall
design procedure.

Evaluating the alternative error function on a dense fre-
quency grid with 0 < w; < 7, fori =1 , M x N,
a good discrete approximation of Ega,k(e’”) can be ob-
tained. Thus, the following equation holds

¢=Ww (h-TUa) ®)
where
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&= [ESM(erl) ESM(GNC)]
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where C < M x N, as the original frequencies in the tran-
sition band were discarded, and Wi (w) is defined as

W(w)

W) = Z oo

(10)

An ideal lowpass filter is represented in Fig. 1, where 6, is
the passband maximum ripple, d; is the stopband minimum
attenuation, and wp and w, are the passband and stopband
edges, respectively. Based on these values, define

DB,

2010g,, (+—§”) dB (11a)
¥4

DB, = 20log,,(5,) dB (11b)
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Figure 1. Typical lowpass filter specifications.

The design of a lowpass digital filter as specified in Fig. 1,
using either the minimax method or the WLS approach,
is achieved making the ideal response and weight functions
respectively equal to [7]

- 1, 0f<w<w

Hy(w) = {0’ Ws-S UJ—S ;. (12)
— 1) 0 S w S Wp

Ww) = {Jp/és, woSw<m (13)

3. CLASSIC APPROACHES

3.1 Chebyshev Method
Chebyshev design consists on the minimization over the set
of filter coefficients of the maximum value of |E(e’“)], i.e.,

1B oo = min max W ()| Ha(e™)—H()|  (14)
Referring to Fig. 1, the minimax method minimizes
DB;s = 20log,,(d) dB (15)

where § = max[6,,ds]. A characteristic of minimax filters
is their equiripple magnitude responses [8] as depicted in
Fig. 2 (dash-dotted curve).

3.2 Weighted-Least-Squares Method
The weighted least-squares (WLS) approach based on the
auxiliary error defined in (6) minimizes at the k-th iteration

| Esme(e™) iz =
A(@))? oy _ Fr(adwy2
Wi w ' Hy(e’)—H() dw (16
I (@) I )~ (™) dw (16
With the discrete frequencies, (16) is approximated by

| Esm(e’™) |} ~é"e a7

where ¥ denotes the conjugate-transpose operator. The
minimization of such function is achieved by

aly = [Re(fJH)WRe(fJ) + Im(fJ”)WIm(fJ)] -

[Re(ﬁ”)WRe(ﬁ) + Im(fIH)WIm(fx)] (18)
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Figure 2. Lowpass frequency response of minimax-
(dash-dotted) and WLS-based (solid) filters.

Referring to Fig. 1, the WLS approach ideally maximizes
the passband-to-stopband ratio (PSR) of energies

“» H?(w)d
PSR = 10log,, M dB (19)
fu, H2(w)dw

A typical lowpass digital filter designed with the WLS
method is depicted in Fig. 2 (solid curve), where the large
ripples near the band edges are easily identified.

3.3 Lim-Lee-Chen-Yang Method

In 1961, Lawson derived a scheme that performs Chebyshev
approximation as a limit of a special sequence of weighted
least-p (L) approximations with p fixed. For instance, the
Lo Lawson algorithm is implemented by a series of WLS
approximations using a varying weight matrix Wy, the el-
ements of which are calculated by [9]

Wi (w) = WE(w)Bi(w) (20)

with Bx(w) = |Esum,k(w)|, where Esax(w) is the alterna-
tive error function at the k-th iteration.

The Lim-Lee-Chen-Yang (LLCY)algorithm [10] is an ef-
ficiently accelerated version of the Lawson algorithm. That
approach is characterized by the weight matrix Wy recur-
rently updated as

Wi (w) = Wi (w)Bex(w) (21)

where Ber(w) is the envelope function of By (w) formed by
a set of piecewise linear segments that start and end at
consecutive extremals of By (w). Band edges are considered
extremal frequencies, although edges from different bands
should not be connected.

Fig. 3 depicts typical cases of the absolute value of the er-
ror function (dash-dotted curve), used by the Lawson algo-
rithm to update its weighting function, and its correspond-
ing envelope (solid curve), used by the LLCY algorithm to
update its weighting function.

4. THE NEW APPROACH

Comparing the adjustments used by the Lawson and
LLCY algorithms, described in (20)-(21), with the
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Figure 3. Absolute error function B(w) (dash-dot)
and corresponding envelope B.(w) (solid).

piecewise-constant weight function used by the WLS
method, one can devise a very simple approach for designing
IIR digital filters that compromises both minimax and WLS
constraints. The new approach consists of a modification
on the weight-function update in such way that it becomes
constant after a particular extremal w of the stopband of
Bk(w)a i-e'v

Wk2+1(w) = Wl?(“’)ﬁk(w) (22)

where, for the Lawson and LLCY algorithms, Gk (w) is re-
spectively defined as

puw) = Buw) = { Pl D5258

= Be) = { GAlch SFESS

An example of the new approach is depicted in Fig. 4, where
wj was chosen as the fifteenth extremal in the filter’s stop-
band. One should note the slight distinction between Fig. 3
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Figure 4. Modified weight functions for the new ap-
proach: Lawson (dash-dot) and LLCY (solid) ver-

sions.
and Fig. 4 for w > 1.5 rad/s.

The parameter J is the single design parameter for the
proposed scheme. Choosing J = 1, turns the new scheme
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into an equiripple-passband WLS design. On the other
hand, choosing J as large as possible, i.e., making wj =,
turns the proposed scheme into the Lawson or LLCY al-
gorithms. Qur experience has indicated that choosing
J = P[5, where P is the total number of ripples in the
stopband, yields a very good compromise between the lev-
els of stopband energy and minimum attenuation.

5. COMPUTER SIMULATION

The proposed method is used to design an IIR filter spec-

ified as

fredwy _ JeiTY 0L 4

H(™) = { 15 ™ (24)
with 75 = 12, N = 12 and DBp = 0.1 dB.

The resulting magnitude and group-delay responses
(within the passband) are shown in Fig. 5 and Fig. 6, re-
spectively, for different values of J. Fig. 5 shows a clear
trade-off between the DBs and PSR figures of merit. More
specifically, for J = 4 (Chebyshev design), the DBs was
—35.38 dB and PSR = 36.97 dB, and for J = 3, we had
DBs = —33.00 dB and PSR = 39.03 dB. For the other
values of J, the specifications were not satisfied. In fig 6,

notice how close the delay is in all cases to the specified
value 75 = 12.
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Figure 5. Magnitude responses for different values
of J.

As reported in [10] and [11], which present alternative
methods to approximate IIR digital filters, the resulting fil-
ter may not be stable and the algorithm may not converge.
In our simulations, these facts were observed when the filter
order was higher than necessary to satisfy the prescribed
specifications. Therefore, if some numerical instability is
observed during the convergence process, the filter order
should be reduced and the process started all over again.
Some additional strategies are currently under considera-
tion to further improve the convergence properties of the
overall design procedure.

6. CONCLUSION

A simple method for designing IIR digital filters was pre-
sented. The method is based on a modification of the so-
called Lawson and Lim-Lee-Chen-Yang algorithms, forcing
the weight function to become constant in a specific fre-
quency interval. The Steiglitz-McBride approach was used
to pseudo-linearize the overall optimization problem. In
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Figure 6. Passband group-delay responses for dif-
ferent values of J.

that manner, the modified Chebyshev problem was solved
through a series of WLS iterations with different weight
functions for each iteration. The result is an IIR digital
filter whose stopband presents good characteristics with re-
spect to the levels of attenuation and energy, simultane-
ously.
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