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ABSTRACT

In this work, performance of several adaptation
algorithms are investigated for the reception of
CDMA signals. Two adaptive receiving frameworks
are considered: the standard channel equalization
with training sequence, and the fractionally-spaced
equalization. Amongst the several widely known
adaptation algorithms, we consider the LMS, the
RLS, the binormalized data-reusing (BNDR), and
the quasi-Newton (QN) algorithms. The overall sys-
tem behavior is verified in a multiuser environment
(15 users), and for several values of the signal-to-
noise ratio (SNR). Algorithm performances are mea-
sured by the resulting receiving bit error-rate.

1. INTRODUCTION

Due to their intrinsic advantages over the fixed
systems, e.g., mobility and facility of system ex-
pansion, mobile cellular phones have become very
popular in the past decade. Code division multi-
ple access (CDMA) has become one standard tech-
nology for digital mobile telephony as it is less
amenable to channel imperfections than previously
used techniques, and it allows a large number of
users for a given bandwidth. Other advantages of
the CDMA technology include reduced signal distor-
tion due to multipath propagation, reduced missed
calls during handoff, higher data secrecy, reduced
costs for system operation and expansion, reduced
electromagnetic interference to other electronic de-
vices, and (possible) reduced risks to human health
due to the attenuation of the average transmission
power [1,2,3].

In this work we analyze the ability of CDMA sys-
tems on dealing with the problem of uplink multi-
path propagation. Such phenomenon typically oc-
curs when the signal, leaving the mobile station,
reaches the base station following several different
paths: a more direct one and others due to obsta-
cles such as buildings, trees, hills, etc. To reduce
the effect of multipath propagation we consider two
commonly employed techniques: adaptive channel
equalization and adaptive fractionally-spaced equal-
ization [4,5]. In these frameworks we evaluate the
performances of four adaptation algorithms: two
gradient-type schemes, namely the LMS [4] and the
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binormalized data-reusing (BNDR) [6] algorithms,
and two Newton-type schemes, the RLS [4] and the
quasi-Newton (QN) algorithm [7].

This paper is organized as follows: in the follow-
ing section, we describe reception of CDMA signals
with adaptive equalization. In Section 3, we briefly
describe the LMS, BNDR, RLS, and QN adapta-
tion algorithms, listing their respective characteris-
tics with respect to computational complexity, con-
vergence speed, robustness, etc. In Section 4 we
include computer experiments comparing the per-
formances of the adaptation algorithms mentioned
in Section 3 when receiving CDMA signals in a va-
riety of setups. Section 5 closes the paper listing
conclusions drawn from the experiments carried out.

2. ADAPTIVE CDMA SIGNAL
RECEPTION

A basic CDMA system is depicted in Fig. 1. A
common drawback for this type of system is that
several copies of the transmitted signal reach the
receiver after following a distinct path each. This is
the so-called multipath problem. Such issue can be
greatly reduced with a proper channel-equalization
procedure, as explained below.
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Figure 1: Basic CDMA system.

2.1 Standard Adaptive Equalizer

The block diagram of a standard adaptive channel
equalizer is given in Fig. 2. In such scheme an input
signal, also known to the receiver, is initially trans-
mitted and corrupted by the multipath channel. An
adaptive filter is then used to remove channel distor-
tion, in such a way that the adaptive-filter output
signal resembles the original transmitted signal after
the adaptive-filter convergence, i.e., when the error
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signal approximates zero. The delay block that ap-
pears in this configuration is used to compensate for
the processing delay introduced by both the channel
and the adaptive filter.
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Figure 2: Standard adaptive channel equalizer.

2.2 Fractionally-Spaced Adaptive Equalizer

In the fractionally-spaced equalizer, as described
in [5], the idea is to work on a rate M times faster
than the original sampling rate. In that manner, a
large number of iterations is required, but each itera-
tion takes just 1/M seconds of the original sampling
period. This can be achieved by interpolating the
original training sequence introducing M — 1 zeros
between the original samples of the input sequence.
A low-pass filter is then used to smooth the resulting
interpolated signal, followed by an energy normal-
ization procedure that adjusts the resulting energy
level. Such scheme is used to generate the new in-
put signal that will be used in the same fashion as
described for the standard adaptive channel equal-
izer, but on a time scale M times higher than the
previous one.

nput new input
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——={ INTERPOLATOR Lﬂ FILTER NORMALIZATION

Figure 3: Generating the input and reference signals
for the adaptive fractionally spaced equalizer.

3. ADAPTATION ALGORITHMS

The block diagram of a general adaptive system
is seen in Fig. 4, where z(n) represents the input
signal, y(n) the adaptive-filter output signal, d(n)
the desired output signal, and e(n) the error signal.

In this work, we will assume that the adaptive
filter is implemented by a time-varying FIR filter,
the transfer function of which is given by

H(z,n) = wo(n) + wi{n)z~t + ... + wn(n)z™N
1
where N is the filter order and the w;’s are the

adaptive filter coefficients. We also use the nota-
tion w(n), for the adaptive coefficient vector, and
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Figure 4: Adaptive-filter block diagram.

x(n), for the input signal vector, defined as

wy(n) 17
z(n—N) |
(2)

w(n) = [ wo(n) wi(n)

z(n)=[ z(n) x(n-1) r

respectively.

3.1 The LMS and RLS algorithms

The LMS and RLS are standard procedures and
their descriptions, derivations, and analyses can be
found in many standard books on adaptive signal
processing, such as [4]. For the sake of complete-
ness, their pseudo-code descriptions are included in
Table 1 and Table 2, respectively.

Meanwhile, the BNDR and QN algorithms are
somewhat new and not as widely known as the other
two algorithms. They are then discussed in more
depth below.

TABLE 1
LMS ALGORITHM DESCRIPTION

Given z(n), d(n), and w(n), compute:
y(n) = 27 (R)w(n)
e(n) = d(n) - y(n)
w(n + 1) = w(n) + pe(n)x(n)

3.2 The BNDR algorithm

The BNDR is a variation of the LMS algorithm
where at each iteration the algorithm is forced to
adapt in two orthogonal directions. Such scheme
can be visualized as each set of data is used twice in
the algorithm convergence, once at iteration n, and
then at iteration n + 1, thus the data-reusing ter-
minology. The binormalized term comes from the
proper choice of the convergence parameter for each
of the two directions followed by the algorithm at
each iteration. It can be shown that the BNDR al-
gorithm performs extremely well, although it only



TABLE 1I
RLS ALGORITHM DESCRIPTION

TABLE 1V
QN ALGORITHM DESCRIPTION

Given z(n), d(n), w(n), and R(n), compute:
y(n) = 2" (n)w(n)
e(n) =d(n) - y(n)
t(n) = R (n)z(n)
7(n) = 2T (n)t(n)

R'(n+1)=1 {R—l(n) - %’-ﬁ%@}

w(n+1) =w(n) + ,\f_,n(n t(n)

involves vector operations, even in cases of colored
input signal, as opposed to the standard LMS algo-
rithm. Table 3 includes a summary for the BNDR
algorithm as given in [6).

TABLE III
BNDR, ALGORITHM DESCRIPTION

Given z(n), z(n — 1), d(n), d(n — 1), and w(n),
compute:
a=zT(n)z(n - 1)
b= 2T (n)x(n)
c=zT(n-Dz(n-1)
d = zT(n)w(n)
e=zT(n - w(n)
den =bc—a® +e¢
A = (d(n)c+ea —dc - d(n — 1)a)/den
B = (d(n — 1)b+ da — eb — d(n)a)/den
w(n + 1) = w(n) + Az(n) + Bz(n — 1)

3.3 The QN algorithm

The QN algorithm [7] was derived as a stable al-
ternative for the RLS algorithm when highly corre-
lated signals are present, even in cases of nonpersis-
tent excitation. The algorithm was shown to main-
tain stability even when implemented with finite-
precision arithmetic. Table 4 gives a summary for
the QN algorithm.

4. COMPUTER EXPERIMENTS
4.1 Simulation Descriptions
Transmitter
To compare the adaptive algorithm performances
a system model for a CDMA uplink was developed.
We then considered 15 simultaneous users, not nec-
essarily synchronized, each one with an independent

Given z(n), d(n), w(n), and R(n), compute:
y(n) = 2T (n)w(n)
e(n) = d(n) - y(n)
t(n) = R} (n)a(n)
7(n) = 2T (n)t(n)
p(n) =1/(27(n))
R'(n+1) = R (n) + B2 (n)tT (n)

T(n

w(n +1) = w(n) + £Z(n)

source at a rate of 9,600 bits per second. 10,000 bits
were transmitted in 100 bursts of 100 bits of data
for each user. Source bits were spectrally spread by
direct sequences with processing gain equal to 32
using Hadamard codes. The symbols were BPSK
modulated before transmission.

Source bits were saved for further comparison to
measure resulting bit error rate (BER) for each user
and for each algorithm. To simulate different sig-
nal paths, each user had a distinct time-invariant
channel impulse response. KEach channel received
interference of an AWGN process to simulate a hos-
tile practical environment. Power normalization was
implemented such that signals from all users reached
the receiver with equal power. The signal to noise
ratio was calculated looking upon signal power of
user number 1 soon after modulation and before
transmission through the channel. Detection and
equalization were performed with respect to user
number 1.

Receiver

The adaptive filter used in the equalization proce-
dure had 11 taps (order equal to 10) and the number
of training samples was 40. The adaptation algo-
rithms were adjusted such that the resulting BER
was as low as possible. For that matter, the follow-
ing algorithm parameters were used: ppms = 0.047,
uBNDR = 0.5, AgLs = 0.95.

Equalization was performed after matched filter-
ing and demodulation and before despreading.

4.2 Simulation Results

As we can see in Fig. 5, for the standard adaptive
equalization, it is verified that the gradient-type al-
gorithms, such as the LMS and BNDR algorithms,
are outperformed by the Newton-type algorithms,
such as the RLS and QN algorithms.

In the fractionally-spaced equalization, as de-
picted in Figs. 6 and 7, the BNDR and QN algo-
rithms are outperformed by the LMS and RLS al-
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Figure 5: Bit error rate for the standard adaptive
channel equalizer for several values of the signal-to-
noise ratio: LMS (+); BNDR (0); QN (*); RLS (x).
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Figure 6: Bit error rate for the adaptive fractionally
spaced equalizer for several values of the signal-to-
noise ratio: LMS (+); BNDR (0); QN (*); RLS (x).

gorithms for low SNR values. For high SNR all al-
gorithms performed similarly.

5. CONCLUSIONS

Adaptive equalization is an important segment
of a CDMA system as it greatly reduces distor-
tion introduced by the propagation channel if a
proper adaptation algorithm is used. In this work
we verified the performance of four adaptation al-
gorithms, namely the LMS, RLS, BNDR, and QN
algorithms, in an adaptive equalization framework.
Two distinct adaptive equalizers were considered:
the fractionally-spaced equalizer and the standard
equalizer.

For the standard equalizer, the Newton-type al-
gorithms performed very well, as expected due to
its natural ability of processing colored signals. The
BNDR algorithm had an intermediate performance
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Figure 7: Detailed bit error rate for the adaptive
fractionally spaced equalizer for several values of the
signal-to-noise ratio: LMS (+); BNDR (o); QN (*);
RLS (x).

and remained as a good alternative with low com-
putational complexity for situations with high SNR.

For the fractionally-spaced equalizer, the normal-
ized algorithms were outperformed by the LMS and
RLS algorithms for low SNR values, say SNR< 6
dB. For high SNR values, all algorithms presented
similar performance.
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