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ABSTRACT

In this work, a particular realization for adaptive
IIR filtering and a related special interpretation of the
Steiglitz-McBride method are presented. The proposed
realization Is based on an orthonormal family of func-
tions. The intrinsic unstable behavior of adaptive IIR
filters when modeling highly underdamped poles is a-
voided by visualizing the orthogonal filter as a partic-
ular polyphase realization. A stationary point analysis
of the resulting adaptive filter shows that it maintains
a one-to-one coefficient mapping with the direct-form
realization. In this manner, many known properties
of the SM algorithm related to the direct-form real-
ization can be extended to the proposed realization.
Computer simulations are given illustrating the good
performance of the proposed adaptive IIR filter with
respect to computational complexity, modeling capa-
bility, and reduced order performance. The main ap-
plication emphasis is oriented to echo cancellation, but
other areas of adaptive signal processing can also be
considered.

1. INTRODUCTION

There is a wide variety of applications with a clear re-
quirement for low complexity adaptive filters. The fact
that IIR filters are useful in adaptive signal process-
ing has been widely explored in the last years. It is
expected that these adaptive filters improve the per-
formance of their FIR counterpart in many areas, as,
for example, echo cancellation or postcursor equaliza-
tion in x-DSL receivers.

In fact, often echo cancellation in many high speed
communication systems have channel model where ma-
ny underdumped poles appear. A similar discussion ap-
plies in decision feedback equalization where the post-
cursor filter, normally a long FIR filter, is modeling
the postcursor (causal) intersymbol interference of the
channel [7]. An important aspect of this application
is that the dynamic ol the channel to be equalized is
mainly dominated by two or three real poles [9]. In this
case the substitution of a single FIR adaptive filter for
one with a IIR realization is expected to introduce con-
siderable savings in filter complexity.

The main problems relaied to adaptive IIR filters
seem to be avoiding the suboptimum behavior of a
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stochastic gradient algorithm and eliminating possible
unstability of the adaptive filter when underdumped
poles are being modeled. A solution for the first prob-
lem is obtained by changing the criterium to be mini-
mized from the mean-squared output error (MSOE) to
the Steiglitz-McBride (SM) approach. Although global
convergence is still not casy to be fully established, an
important result relating global MSOE minima and the
SM minima [5], even for insufficient order cases, is the
main evidence that this method is useful in general
cases.

Perhaps the main drawback related to the SM me-
thod is that stability of the estimates can not be guar-
anteed. In fact, this problem is far more difficult be-
cause instability of adaptive IIR. filters when modeling
underdamped poles seems to be an structural problem
[2]. However recently an interesting analysis of the so-
called polyphase realization [3] has shown that a simple
mapping on denominator polynomial can strongly at-
tenuate such unstable behavior.

By addressing the idea of suitable modeling related
to IIR filters, the main focus of this work is oriented
to the introduction of a realization based on a family
of orthonormal rational functions, that also serves for
an efficient implementation of the SM algorithm. Such
realization can be reduced, as a special case, to a real-
ization based on the Laguerre functions or the Kautz
functions [4]. Amongst the advantages of the new real-
1zation, we can mention that several distinct or multiple
order poles can be used, the stability test is simple, the
extension of the polyphase concept to the proposed re-
alization is easy, and also that nice properties in terms
of modularity and suitable numerical conditioning can
be verified. Overall, it is important to highlight the
simplicity of the proposed adaptive filter, as the result-
ing computational complexity is O(N), where N is the
order of the adaptive realization. Also, trigonometric
computations are not required, as opposed to the or-
thonormal lattice filter in [6].

The paper is organized as follows: in section II a
review of both the proposed orthonormal realization
for the adaptive IIR filter and their utilization with
the SM algorithm is included. In section III stationary
points and convergence are discussed. In section IV
a polyphase extension of the proposed scheme is pre-
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sented. In section V examples of the utilization of the
proposed adaptive filter are included.

2. EFFICIENT ADAPTIVE IIR FILTERING

To introduce the orthonormal realization, suppose that
a proper stable linear time invariant dynamical system
is described by y(n) = G(q)u(n), where u(n) is the in-
put signal and y(n) is the output signal. The transfer

function G(g) = 219, with B(g) = bo +big™! + .. +

barg~™ and A(q) = 1+aiqg~ +...+ang~ "V, is assumed
to be strictly causal, i.e. M < N, and asymptotically
stable, and so the model belongs to H2. In this man-
ner, it is possible to write that G(q):Zf’:uu,F,(q), where
{Fi(p}Y is an orthonormal family in Hy. If the sys-
tem modeled is rational, an FIR orthonormal family
will have a poor performance in the identification of
the parameters of the true system. In such case, it is
desirable that F(q) is a family of rational functions,
as for example the Laguerre basis whose orthonormal
functions are identical first-order sections. However, a
crucial limitation of the Laguerre basis is that no more
than one mode per base function can be incorporated in
the resulting function representation. A natural exten-
sion is to consider basis functions builded from distinct
(real or conjugate complex) poles, as for example in the
structure presented in [1] [4].

In this paper, we focus our interest in the case of
real poles for two main reasons. The first one is related
to the applications considered. In fact, both echo can-
cellation and postcursor-decision-feedback equalization
can afford such simplified model without any major
loss of performance. The second reason is related to
the properties of the updating algorithm as discussed
below.

Then, for the particular case of interest, the basis
functions can be written as

Rl = — 2 2 )
A iy 1 Bra!

where §; is the i-th pole and o; = /1 — 82 is a nor-
malization constant. Fig. 1 depicts the proposed real-
ization, highlighting the fact that when multiple-order
poles need to be modeled, all-pass sections should be
included in the last branch as necessary. Note that high
order sections can also be considered to model complex
conjugate poles, but complexity (modularity) is gener-
ally higher.

This given construction preserves orthonormality
and also provides a unifying formulation of all known
system-identification orthonomal structures like FIR,
Laguerre, or Kaulz [4] bases. In some applications,
like in postcursor equalization for x-DSL systems [9],
the order of the system is well kuown but the value of
their poles and their zeros not.

Since the proposed realization is orthonormal, the
structural interpretation of the SM algorithm as the
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Figure 1: Proposed adaptive IIR filter with orthonor-
mal realization.

presented in [6] is useful to obtain an efficient updat-
ing algorithm. The main results related to this devel-
opment, are studied in [8]. The main aspects are the
following:

Given the orthonormal function set represented by
matrix @ as

T(n)\ T(n-1) ) . _[A b
<r<n>) “Q< un) ) 9= (9 P>
where
z(n) = [F1(Q)u(n) Fa(g)u(n) ... Fx(u(m)]¥ (2)
and the apriori error e,(n) defined as
ep(n) = d(n) - y(n) 3)

d(n) =00 ... 1)Q" (ﬁ:i) (4)

where t;(n) = F;(q)d(n), and #(n) and s(n) are given

by
t(n)\ _ t(n-1)
<s<n>> - Q( ) )
Then the algorithm can be summarized as
8(n) = 6(n — 1) + pap,(n)ep(n — 1) ()

P (n)=(F1(g)u(n)...Fn(9)u(n) X1 F1(g)d(n—1)..An Fn(g)d(n—-1)]"

14 is a positive constant, and A; = (—I)Zﬁ—(f,;;l
k

The second reason that justify an adkz;;;Live filter
realization modeling only real poles can now be ex-
plained. The SM algorithm can approximate very clo-
sely the global MSOE even in reduced order settings
[5]. In the worst case of reduced order identification
(i.e., complex conjugate pole pairs), that is indeed the
expected behavior. Hence, the combination of its com-
putational simplicity and suitable modeling for the ad-
dressed applications makes the proposed constrained
realization an excellent candidate to solve the problems
commonly associated to adaptive IIR filters.



3. STATIONARY POINT ANALYSIS

The existence of manifolds [5] is an important. issue in
an adaptive ITR realization for unambiguous stationary
point definition. By straightforward algebraic manip-
ulations it is easy to show that, in order to implement,
the equivalent direct-form transfer function %’%’ the

regressor vector can be written as

’l/)d(n):[A(’q)u(n),..ﬁu(n—}\/)%d(n)...%d(n)]T (6)

The stationary points for both the direct-form realiza-

tion and the orthonormal realization are the solution
of the following equation

E{dpg(n)ep(n)} = E{tp,(n)ep(n)} =0 (7)

Clearly, if a non singular matrix mapping T exists for
the direct-form and orthonormal realizations, such that
P ,(n) = Tip,(n), all direct-form stationary points are
maintained in the new realization. I the mapping is
singular, however, additional stationary points and cor-
responding manifolds are expected. This is true, for in-
stance, for the parallel and cascade realizations where,
for an equivalent model based on first-order sections,
the manifolds exist when the poles of two different
adaptive sections are equal [5].

It is not hard to see that for the proposed con-
strained realization, the matrix T can be written as

Since the direct-form realization uses in general 3 coef-
ficients, a direct map can not be obtained. However, as
can be easily verified the rows of T'y are linearly inde-
pendent defining a suitable definition of the associated
gradients.

As a consequence of the previous analysis, the pow-
erful results related to MSOE scheme also apply to the
SM updating algorithm using the proposed realization
(5].

4. POLYPHASE ORTHONORMAL
REALIZATION

In this section, it is shown that the orthonormal realiza-
tion is proper to the implementation of the polyphase
adaptive IIR filter. The main idea here is to improve
the numerical conditioning of the coefficient covariance
matrix, when underdumped poles are present, by over-
modelling. This is achieved mapping the denominator
dynamic of the filter to a radius lower than one, i.e., by
replacing z by 2P, with p a integer [3]. In this manner,
the polyphase realization can be written as

He) = 22G) _ bpotbpazTt 4 A byt
T Ap(zP) T l=apy27P — ... —ap PN

where p is the polyphase expansion factor.

For the case of the orthonormal realization it can be
shown that a special form of the poles leads naturally
to the polyphase realization. This can be shown for p

T = T, 0 an even integer, particularly it is shown for second or-
N I I der section. An straightforward proof can be obtained
for higher even p expansion factors. After some elabo
where
N N 2 N
ay —01 ) k=2 Ok a1 jao H]-:N A Qg —j a1 [Ti=n ak
T, =
N-1 N—1 7l N-1
an [Te=1 @ aON P opat [li=y_1ara-; —an k=1 aN

the determinant of which, by induction, is given by

N N
det(T;) = <H ak> 1T 1-axae
k=1

k.jk#]
Hence, since |ag| < 1, for k = 1,..., N, this deter-
minant is never null. Then the stationary points of
the orthonormal realization present a one-to-one corre-
spondence to the stationary points of the direct-form
realization.

If we consider the special case of high-order poles in
the proposed realization, when they are contemplated
in the adaptive filter structure, as in Fig. 1, a similar
conclusion can be obtained. This is easy to see by in-
cluding the all-pass first-order sections to each output
tap of the orthonormal realization as needed. Assum-
ing, for instance, a third-order realization, with a single
pole a;, and a second-order pole az, with a; # as, then
‘the matrix T’ takes the form

[e4] —2(12(11 a.:;ul
arazas  —(a1 +az)as g

T, =

ration, the orthonormal realization with second order
sections can be written as

1

_ Ogo + g1z .
Fk(Z) - l—aklz‘l—amz‘z (8)
o+ a2zt
FIQ(Z) — k0 — k1 5 (9)

1—ap1z7t —agaz™
where in order to maintain orthonormality, i.e., [|Fr(2)]] :
1 and < Fi(2), Fi(z) >= 6p,, the numerator coeffi-

cients are given by

1 1
ako=~§\/c—1(\/5§+ Ves); Otm:a\/c_f(\/@—\/c_s
afo = aki; g = o

with ¢1 = 1 —aga, c2 = 1—ag1+agz, and c3 = L+ag; -+
ars. Then, because ax; = 0 for a polyphase factor of
2, it is easy to show that aro = /1 —ai,, ag1 = 0,

oy = 0, and af; = /1 — a?,. Finally equations (8)
and (9) can be rewritten as
«
Fi(2) = 1__.ﬂ_

—20
Ap2Z 2

Fi(z) = Fy(z)z71
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respectively. In the same way, for fourth order sections
(p = 4), with apy = ar2 = arz = 0, it is possible to
obtain

ko
Fe(z) = T agar—’
Fi() = Fe(2)2™% F'() = Fuls)s™

This procedure can continue in a similar form for
higher and higher order expansion factors. The impor-
tant remark to make here is related to the condition
on the poles of each section: If they are different, then
all the stationary point of the direct-form (real-pole)
polyphase realization are maintained. Also it is impor-
tant to note that all properties related to the orthonor-
mal realization are maintained, i.e., a suitable scaling
of all the variables and input orthogonalization.

Fi(2) = Fe(z)z7!

5. COMPUTER SIMULATIONS

To illustrate the expected behavior of the proposed re-
alization, a comparison between the orthonormal SM
realization and the polyphase orthonormal SM realiza-
tion in a system identification application is presented.
The plant to be identified is H(z):;_—l;—i‘_%, the
input is unit variance white noise. A white noise was
included to introduce a SNR equal to 50 dB. The re-
sults of the simulations are depicted in figure 2, where
an average over 100 computer runs was performed. As
illustrated in this figure, even for this example of high-
module poles (0.9 and 0.85), the performance of both
adaptive filter realizations presents fast convergence
with better behavior, as expected, obtained with the
polyphase version of 4-th order.

6. CONCLUSIONS

A new scheme for adaptive IIR filtering is proposed
based on an orthonormal family of functions yielding
a one-to-one correspondence to the direct-form struc-
ture. A Steiglitz-McBride algorithm is used to achieve
(quasi-)optimal performance, even in cases of insuffi-
cient order modeling. It was verified that the adaptive
IIR orthonormal realization used with the restricted
(real-pole) Steiglitz-Mcbride algorithm presents inter-
esting characteristics as low computational complexity,
good convergence speed and excellent numerical condi-
tioning,.

With the complementary results obtained by com-
puter simulations, it was possible to conclude that this
structure performs as required by many high speed ap-
plications, as for example echo cancellation and equal-
ization in broadband transmission systems.
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Figure 2: Learning curve for orthonormal and

polyphase orthonormal adaptive IIR filter with SM al-
gorithm.



