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Abstract

The composite squar ed-err or{ CSE) algorithm results
from the combination of the backpropagation algorithm
with the pseudo-linear algorithm of Scalero and T e-
pedelenliqlu. It is observe dthat the CSE algorithm
1s uble to avoid suboptimal solutions and associated
saddle points, thus achieving lower values of the er-
ror function than the pseudo-linear algorithm, in fewer
iterations than the backpropagation algorithm. In this
paper, we investigate the implementation of the CSE
algorithm with the concepts of momentum gain, time-
varying learning rate, and time-varying combining fac-
tor. It is verifie dthat these features can improve the
overall properties of the CSE convergence process. |

1 Introduction

Neural networks have been used as an efficiert tool for
solving a wide varietyof problems in signal process-
ing. Due to its inherent simplicity and effectiveness,
the backpropagation (BP) algorithm has become stan-
dard for training feedforward neural netw orks []. De-
spite its relative success, the learning speed of the BP
algorithm can often be unsatisfactory. Such character-
istic is directly associated to the intrinsic minimization
of a nonquadratic error function follo winga steepest-
descent path.

In this article, w e explore the general capabili-
ties of the composite squared-error (CSE) algorithm,
namely faster con vergencespeed than the BP algo-
rithm and low er steady-state mean squared-error than
the pseudo-linear algorithm [2]. We consider the CSE
algorithm with momentum gain, time-varying learning
rate, and time-varying combining factor. It is verified
ho w these features can affect the overall con vergence
process of the CSE algorithm. :
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2 Backpropagation Algorithm

The backpropagation (BP) algorithm [1] is based on a
gradient-type method to update the weigh ts of a neu-
ral net w ork b y minimizinhe mean-squared value of
the output error, e, 1k, betw een a target (desired) sig-
nal, d, 1 x, and the signal at the output layer of the
net w orkg, 1 x, for the corresponding training-pattern
(input) signal, x, 0 % (see Fig. 1). Such error is used to
update the weights of the output layer and it is prop-
agated bac k(thus the name of the algorithm) to the
hidden layers of the netw ork to update the correspond-
ing weights.
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Figure 1: Modified neuron structure for the output
layer.

For the BP algorithm, the learning process is as fol-

Jows: at the n-th iteration and for the p-th pattern,

the i-th weight of the k-th neuron of the L-th (output)
layer is updated as

w(n + ks =wn)o e + pep L xpr—1: (1)

where y is the step-size (learning rate), zp r; denotes
the output signal of the i-th neuron of the L-th la yer.
The output error is then formed as

ep Lk = f' (Up,L.k) [f(dp,L k) ~ Zp,L.k) (2)
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where yp 1, denotes the signal at the output of the
summation node, and f'(-) is the first derivative of f(-).
For thej-th (hidden) layer, thei-th weight is updated
as

w(n+ 1) ki = w(n)j ki + fepjklpj—1,i (3)
with the respective error calculated as
k
epgik = F'(Yp,sik) Z €p,j+1,iWj+1 i,k 4)
i=1
where w;; ; x refers to the k-th weight of i-th neuron
of the (j + 1)-th layer.

3 Pseudo-Linear Algorithm

The nonquadratic objective function minimized by the
BP algorithm arises due to the nonlinear operator, f(-),
placed after each summation node. This nonlinear-
ity may generate local minima and associated saddle
points that may cause slow convergence or even con-
vergence to a local minimum. As shownin Fig. 1,
by means of using the inverse of the nonlinear oper-
ator, an alternative pseudo-linear error, e;,’ £k May be
constructed yielding a distinct objective function to be
minimized. The resulting algorithm, hereby referred to
as the pseudo-linear (PL) algorithm, has the output-
layer w eigh ts updated as [2

w(n+1)L ki = wW(N)L ki + Hep L 1 Tp,L-1,i (5)

The remaining (hidden-layer) w eigh tare updated in
the same fashion as in the BP algorithm, i. e., accord-
ing to (3) and (4).

Although one may argue that the error minimized is
still nonlinear with respect to the weigh ts in the hidden
layers, sev eral simulations in [2) have shown significant
improvements in the con vergence speedof the PL al-
gorithm when compared to the BP algorithm. This
suggests that the influence of the hidden layers on the
shape of the objective function minimized by the net-
w orkis not as crucial as the influence of the output
layer.

In [2], the authors also claim that once the error
at the output of the neural netw ork has been reduced
to zero, the modified structure has converged to the
global minimum of the corresponding BP error func-
tion. How ev er, zero output error mg not be achiev able
due to noise, incorrect modeling, or too-short training
periods. In such cases, the PL solution obtained after
completing the training period is biased with respect
to the BP optimal solution. In fact, an optimal mean-
squared pseudo-linearized error, e;,L,k, do not corre-
spond in general to an optimal mean-squared output
error, €, 1, k-

4 CSE Algorithm

The CSE algorithm [3}]-[5], originally developed in the
framework of adaptive IIR filtering, w asfirst applied
to neural netw orks in{6]. In the proposed method, a
combination of the BP and PL algorithms is used to
update the weights of the output layer, that is

w(n + 1)pki = wn) Lk +p YA+ (1= 7)Au]  (6)
where

,
A = €p,L kLp,L-1,i (7)
A = €p, L kTp L—1,i (8)

All other layers are updated as in the standard BP
algorithm. In this composite algorithm, ~ is the com-
bination factor that controls the overall con ergence
process. A good strategy is to start with v = 1.0, th us
forcing the CSE algorithm to behave like the PL algo-
rithm at the beginning of the learning process, and then
switc h the ulue of v to 0.0, to ac hiev e corengence to
the BP optimal solution, as desired. Switch from one
updating scheme to the other may be abrupt, resulting
in tw odistinct phases, or gradual as suggested in [6].
T ounderstand better the con vergenceprocess of the
CSE algorithm, consider the following example.
Example 1: In this example, a function defined by

-6.1 ) [ 0.0
~6.0 0.0
—4.1 0.97
—4.0 0.99
P=1 a0 T=) 001 | ©)
+4.1 0.03
+6.0 1.0
| +6.1 | | 1.0

where P defines eight inputs and T characterizes the
associated targets, was approximated by a neural net-
w ork with 1 lger, 1 neuron, and 1 weight and bias pa-
rameters. For this 1-layer case, f(.) was implemented
by a sigmoid function with output in the range [0, 1].
Convergence speed was optimized for all distinct values
of ~, resulting in g = 0.005 when v = 1.0, and g = 01
when v = 0.0.

Fig. 2 shows the associated error function for v = 1.0,
v = 0.01, v = 0.002, and v = 0.0, respectively. Notice
ho wthis function starts quadratic when v = 1.0 and
becomes highly irregular when v = 0.0.

The learning MSE process for the BP, PL, and CSE
algorithms are shown in Fig. 3. Notice that when
~v = 1.0 {(PL algorithm), convergence is fast but biased,
while for v = 0.0 (BP algorithm), convergence is slow
but un biased. An excellent compromise is achieved
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Figure 2: Example 1 - Error surfaces for distinct values
of the combination factor: (a) vy = 1.0; v = 0.01; v =
0.002; (d) v = 0.0.

with the CSE algorithm when the value of +y is switched
from v = 1.0 to v = 0.0 at the 50th iteration (deter-
mined by heuristics), resulting in a fast and unbiased
learning process. :
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Figure 3: Example 1 - MSE {dB] convergence: BP (’x’),
PL (’+’), and CSE (’0’) algorithms.

It is interesting to notice that if the function f(.)
in the output layer is linear, then both the PL and
CSE algorithms become identical to the standard BP
algorithm. In most practical classification problems,
ho w eer, using a linear f(.) is not recommended [1].
Therefore, in such cases, the CSE algorithm becomes a
good alternative to the BP and PL algorithms.

5 Extended CSE Algorithm

5.1 Momentum Gain

As demonstrated in [7], using the concept of momen-
tum gain to update the neural netw ork allaws its learn-
ing process teespond not only tothe local gradient,
but also to the surroundings of the error surface. Incor-
porating such concept into the CSE algorithm results
into an updating procedure described by

w(n+ 1)z =wn)r g +
A=-mpyAr+ (1 -7)Au]+
n{wn)r ki — w(n)p,k,i (10)

with A; and A,y as in (7) and (8), respectively, and
where 0 < 5 < 1 is the momentum gain that controls
ho wmuch of the previous weight change affects the
current weight change. T ypically suk constant is set
to n= 0.95 [7]

5.2 Time-Varying Learning Gain

It has been verified that convergence of adaptation
algorithms can be greatly accelerated by using time-
varying learning rate. Suc h feature can be implemened
in the CSE algorithm based on heuristics, as suggested
in [1], or follo wing some specific rule, as proposed here.
Follo wing the approach in [3] for the CSE algorithm
applied to adaptive IIR filters, a time-varying learning
rate for the j-th layer of the neural netw ork ma be of
the form

a
Esize(P) 2

p=1 pi—1,%

#i(n) = (11)

where 0 < a < 1. Equation (11) shows that the learn-
ing rate p should be specific for each layer j, and its
value is normalized by the total energy of the input
vector of such layer. The parameter « is introduced to
take into account the stochastic nature of the applica-
tion at hand. Details of the derivation of Equation (11),
although in the adaptive filtering framework, are found
in [3].

5.3 Time-Varying Combination F actor

The major capability of the CSE algorithm is its abil-
ity to combine the learning processes of the BP and PL
algorithms. Such feature is con trolled ly a single pa-
rameter . Using a time-varying combination parame-
ter wisely is therefore adamant for a fast and efficient
learning process. The difficulty of such scheme, how-
ever, lies on determining the precise rate in whid the
value of v should change from 1.0 to 0.0.
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Here, we propose to monitor the learning process for
v = 1.0. Thus, when some slowing down is detected,
that is, when the value of the error does not change
much in a given number of iterations (say 10) that
should indicate that the PL is close to its solution, and
then <y should be made equal zero. Hence,

1.0, forn<r
(n) = { 0.0, forn>r (12)

where 7 is the smallest n such that
K
2k [%;x(ﬂ) — ep,,k(n — 10)] <e (13)
> k=1 €p,L,k(n — 10)
and € is a small positiv enumber. Experiments have

sho wn that € = 0.01, for instance, yields very good
results in terms of the overall CSE comvergence speed.

6 Simulation Results

Example 2: In this example a neural net w orkcon-
sisting of 2 neurons in the first layer and 1 neuron in
the output layer w asused to implement the classical
problem where the output signal must be an XOR op-
eration onto the inputs. The sigmoid function was used
as f(.) in both layers. Adaptation parameters were set
as i = 0.3. Fig. 4 shows the MSE for 50000 epochs for
the BP, PL, and extended CSE algorithms. From this
figure, w e can clearly werify the superior performance
of the proposed method. Notice how the BP algorithm
remained trapped for a long time (about 26000 epochs)
in a flat portion of the error surface, while the extended
CSE algorithm w asable to awid such behavior with
the help of the PL algorithm in the beginning of the
convergence process. .

7 Conclusions

In this article, an extended version of the composite
squared-error (CSE) algorithm for training neural net-
works was introduced. The CSE algorithm combines
the good properties of fhec ~ kpropagation algorithm
(namely, global optimal solution), and of the pseudo-
linear algorithm of [2] (faster convergence, in general).
In several simulations performed, the CSE algorithm
regularly converged to the global minimum with a
speed superior to the one of the bac kpropagational-
gorithm. Extensions of the CSE algorithm to incorpo-
rate features such as momentum gain, and time-varying

learning and combination factors were proposed. The’

extended CSE algorithm has the additional advantage
of requiring less heuristics to be implemented in prac-
tice than the standard version of the CSE algorithm
given in [6].

) MSE [dB] Canvergence
10 ~T ™ T hn T ~—T"

Figure 4: Example 2 - MSE {dB] convergence: BP (’x’),
PL ("+’), and Extended-CSE (’0’) algorithms.
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