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ABSTRACT

A subband analysis of the stationarity characteristics of speech sig-
nals is performed. The analysis is based on the evaluation of sev-
en distance measure techniques between consecutive speech seg-
ments. The overall ensemble comprised a total of 600 speech sen-
tences each of duration varying from 2 s to 3 s, generated by two
male and one female speakers. Segment lengths of 10 ms to 30 ms
were considered. The experiments have shown that: most distance
measure techniques yielded equivalent results; segments of 10 m-
s presented greater level of stationary between O and 1 kHz; for
other lengths, all bands presented similar stationarity degrees. Re-
sults can be applied for a proper subband speech processing (e.g.,
coding) that depends on the stationary assumption of the signals
involved.

1. INTRODUCTION

Speech coding has become an even more intense research area in
the past two decades. Before that, vocoders (codecs for speech
signals) attained a high level of compression at the expense of a
considerably low quality of the decoded signal. In 1985, Schroed-
er and Atal [1] changed such status quo by introducing the concept
of code-excited linear prediction (CELP) vocoders that achieved a
high level of compression rate with a speech quality comparable
to standard wave-format coders, such as PCM and its variations.
Recently, lower and lower rates are achieved by the speech oders
being used in the areas of mobile phones and computer network-
s {2]. Such enhanced coding efficiency, with respect to the overall
distortion rate and computational complexity, is being achieved by
better exploring the speech signals intrinsic (statistical) character-
istics. This paper focuses on subband analysis of the stationarity
characteristics of speech with applications to subband coding.

Seven distance measure techniques found in the literature are
used. An ensemble of speech samples is employed, comprising a
total of 600 sentences from three different speakers, two male and
one female. Several segment lengths are evaluated, ranging from
10 ms to 30 ms. It is verified that most figures of merit yield very
similar results. In addition, the subband stationarity assessment is
shown to be essencially speaker independent for a given gender. It
is also verified that for most segment lengths considered no level of
stationarity distinction can be observed between separate frequen-
cy bands. However, for segments of 10 ms, it is clearly noticed that
the lowpass band, between O and 1 kHz, presents a higher level of
stationarity than the other bands.
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Organization of the present work is as follows. In Section 2,
we describe the subband analysis procedure. In Section 3, the dif-
ferent distance measure techniques used in this work are presented.
In Section 4, all experiments performed are described and the cor-
responding results are shown. Section 5 emphasizes the important
conclusions drawn from the analysis provided.

2. SUBBAND STATIONARITY ANALYSIS

The procedure for performing stationarity analysis on the subband-
s of speech signals is based on measuring some form of variation
in the subbands of speech signals. Such variation can be deter-
mined, for instance, by the differences between the envelopes of
the magnitude responses of each frequency band in consecutive
speech frames.

We then first perform a signal decomposition using an anal-
ysis filter bank that generates the signal components s;(n), for
i =1,...,N, where N is the total number of subband filters.
Following, all signals s;(n) are segmented into frames of constant
length. For each individual frame, a 16-th order linear prediction
analysis is performed [3], based on the autocorrelation method us-
ing the Hamming window function centered around the segmen-
t. The magnitude response of the linear prediction model cor-
responds to a smoothed version of the speech magnitude spec-
trum [3],{4]. We then determine for each band, the distances d;
between these spectral envelopes for all consecutive frames. For a
total of K frames, these vectors d; have K — 1 entries. A figure of
merit, the so-called degree of spectral variation (DSV), based on
such distance measurement is the average value of the elements in
d;, thatis

DSV, =

1 K—~1
v kz_ldi(k), M

where d;(k) represents the k-th entry of d;.
For a given subband 3, the relative variation percentage RV P,
with respect to all NV bands is defined as

DSV,

RVP.(%) = ——2
W =S bsw

x 100 )

Such figure represents a more meaningful measurement for all
€Omparison purposes.

In this particular paper, two kinds of filter fiter bank were
employed for speech decomposition. One of them was a 4-band
cosine-modulated uniform filter bank derived from a 32-length
prototype filter as given in [5]. The other one was a 4-band filter
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Figure 1: Magnitude response of the 4-band cosine-modulated u-
niform filter bank used in the decomposition.

Magnitude Respons (d6)

Figure 2: Magnitude response of the 4-band filter bank based on
the extremal-phase 90-th order Daubechies wavelet used in the de-
composition.

bank based on the extremal-phase 90-th order Daubechies wavelet [5].

These banks are power-complementary such that
N
ST IHE) =1, ¥ € [0, 7] 3)
i=1

where | H;(e7%)| represents the magnitude response of the i-th fil-
ter in the bank. Fig. | and Fig. 2 depict the magnitude responses
of both filter banks here employed.

3. DISTANCE MEASURE TECHNIQUES

The distance measures determine the difference between some s-
tatistical characteristic of consecutive speech frames.

3.1. Log-Spectral Distances

Given two models o /A(z) and o’/ A'(z) of the form

P P

Al(z)=1- Zaiz_i; A@z)=1- Za;z—i 4)

=1 =1

where P is the mode] order and the a; and a} are the corresponding
linear prediction coefficients and o, o’ are gain factors. The error
or difference between these two models in a log-magnitude scale
is given by

_ 02 (01)2
V@—“bwmﬂ”ﬂmwmﬁ ®

In [6], a proper distance measurement D, based on this error func-
tion is defined as

0, = 5 [ Wiewras ©

For p = 1, one has the absolute log-spectral measurement; for p =
2; one has the mean-squared log-spectral measurement; and for
p — oo, one has the maximum log-spectral measurement. In [6]
it is verified that the distances D, and Do, are very similar for all
practical purposes. In this paper, we use D» in dB, given by

2

10 1 i ’ ! ’
o o
Dy(dB)=7—— |+ E In ——1—In = }
In10 Lk:—L/2 A(eLZ") Al(e’TH)

)
where L is the number of points for evaluating (6).
If the two gain factors o and o' are normalized by the frame
energy, a slightly different measurement results:

0o |1 & j Al
‘ 1 T T’
Dy(dB)y=— |— In —|—In —
In10 Lk=§:;/2 A(eﬂz_) A’(e%)
®
with
!
T = %; 7= %/— 9)

where e and e’ are the energy values of the frames associated to
o /A(z) and o' / A'(z), respectively, that is

N1 N-1
e= Zsz(n); e = Zsz(n) (10)
n=0 n=0

3.2. Cepstral Distances

The cepstral coefficients ¢; can be obtained from the linear predic-
tion coefficients a; using {6]:

i—1 g
i + 4 FCkQink,

for1<i< P
C; =
’ (1—E)eipan, forP<i< P

(In

‘When the equation above is employed, the cepstral coefficients
are referred-to as linear-prediction cepstral coefficients. A spectral
distance between two sets of cepstral coefficients, ¢ and ¢ corre-
sponding to consecutive speech frames can then be defined as [6]

I
10 R R
D¢(dB) = ST (co—&0)2+2 E [ei — Cilz 12)
i=1
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where
co=n{o’}; o= 1n{a'2} (13)

A simple variation of such measure is given by [7]

o
2y lei-al
=1

Clearly, De:(dB) = Dy(dB), wheno = o',
It can be verified that the cepstral distance in (12) is used as a
simpler alternative form of calculating D (dB) [6].

D (dB) = ; 10 (14)

nlDd

3.3. Itakura Distance

The Itakura distance [8] is widely used to determine the distance
between two sets of linear prediction coefficients. It is given by [3]

~T ~
D1 (dB) = 10log Z—T;‘—z (15)

where R is the autocorrelation matrix of the correSponding speech
frame, and o and & are derived from the vectors a and 4, contain-
ing the linear prediction coefficients of the true model and of the
alternative model, respectively, as

[A)ee[4]

In this paper, the true and the alternative models corresponded
to consecutive speech frames. It can be observed that Dr is not
symmetric as Dy (a, &) # Di(3 a). To overcome such drawback,
a new measure can be defined as the average between these two
distances, that is [3]

g 1

D; = - [Di(a, 8 + Di(3 a)] an

2

The Itakura Distance is based in the ratio between energies of
residual signals, resulting from filtering the speech frame s(n) by
the true and alternative models 1/A(z) and 1/ A'(z), respectively.
Relationship between Dy and Dj is highly complex and essential-
ly nonlinear as shown in [6].

3.4. Itakura-Saito Distance

The [takura-Saito distance is a simplification of the Itakura dis-
tance given in [8], resulting in

(@0 — &) TR(a0 — &)

D;s(dB) = 10log ~TRa

(18)

Such expression results from a hypothesis test where it is assumed
that the linear prediction coefficients are jointly-normally distribut-
ed with mean given by true linear prediction vector a,. It is then
assumed that a = ao, what is not essentially true due to the s-
tochastic nature of the linear prediction process [3].

As in the case of Dy, the Itakura-Saito distance is not sym-
metric. Once again, this can be overcome by defining an average
distance measurement as

Dis = 3 [Dis(a, 3 + Dis(3.a)] (19)

3.5. LAR Distance

Due to quantization, linear prediction coefficients are often trans-
formed into reflection coefficients, {ki : ¢ = 1,..., P}, in coding
applications. In practice, the reflection coefficients arise naturally
by using the Levinson-Durbin algorithm to solve the linear predic-
tion problem, when the autocorrelation method is employed. Such
reflection coefficients are also commonly transformed in practice
into a new set of coefficients, the so-called log-area ratio (LAR)
coefficients, through the relationship [4]

(20)

1+k‘i]

li:log[l—k-
1

The distance between two sets of LAR coefficients is commonly
defined as the Euclidean norm of the difference between them, that
is

Dr4r{dB) = 10log 1)

In [3}, it is mentioned that among all objective measurements
of speech quality, the LAR distance is the most correlated to sub-
jective measurements.

4. SUBBAND ANALYSIS

All subsequent analyses were performed based on three sets of
200 short sentences, varying in length from 2 to 3 s, phonetically
balanced for the Brazilian Portuguese of Rio de Janeiro [9]. Two
sets are from male speakers and one is from a female speaker.

The values of all distances were determined. Namely: Ds (7),
D, 8) with L = 512; D¢ (12) and D¢ (14), with P' = 32;
D, (17yand D} (19); and DL ar (21). All linear prediction anal-
yses used 16 coefficients, and were based on the autocorrelation
method with the Hamming window [3].

Table 1 shows the values of RVP, defined in (2), for each dis-
tance measure technique for each subband. These values were ob-
tained for 200 sentences of a single male speaker, and the segment
length was made constant at 10 ms. The sample frequency was 8
kHz and it was used the 4-band cosine-modulated filter bank, thus
determining the four subbands in the ranges 0-1 kHz, 1-2 kHz, 2-3
kHz, and 3-4 kHz, respectively. Analysis of Table 1 suggests that
the outcomes obtained through different distance measure meth-
ods are almost similar, and that the degree of stationarity of speech
signals is greater in the frequency range 0-1 kHz.

Table 2 shows the RVP’s for the D5 considering a total of 600
sentences for three different speakers, 200 sentences each, where
two, M1 and M2, were of male gender and one of female gender,
F1. The segment lengths and the analysis bank are the same as.
those used for Table 1. From Table 2 it can be observed that for.
the condition employed the degree of stationarity is higher in the
lowpass band.

Table 3 and Table 4 shows the RVP’s for the D, measurement
resulting from tests with 600 sentences of all three speakers (200
sentences each) for several frame lengths, ranging from 10 ms to
30 ms, using the two filter banks described previously. For the
wavelet filter bank, the four subbands BW1, BW2, BW3, and B-
W4, were in the ranges 0-500 Hz, 500-1000 Hz, 1-2 kHz, and 2-4
kHz, respectively. Table 3 shows that for segments of 10 ms, the
BW1 band has a distinctive greater level of starionarity. But for
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Table 1: RVP for each distance measure technique for 200 of a sin-
gle male speaker for speech segments of 10 ms, when the cosine-
modulated filter bank is used.

BW1 | BW2 | BW3 | BW4
D, 29.26 | 24.54 | 23.13 | 23.07

D, 2832 | 2462 | 23.22 | 23.84
Dc | 2491 | 26.10 | 24.66 | 24.33

Dg 29.41 | 24.53 | 22.97 | 23.09
D, 26.28 | 26.06 | 24.37 | 23.33

D;s | 2930 | 22.36 | 23.40 | 24.94
Drar | 2343 | 27.26 | 26.58 | 22.73

Table 2: RVP for 200 sentences of each speaker for speech seg-
ments of 10 ms, when the cosine-modulated filter bank is used.

BWI1 | BW2 | BW3 | BW4
M1 | 29.26 | 24.54 | 23.13 | 23.07
M2 | 29.14 | 24.00 | 22.49 | 2437
F1 | 27.12 § 26.04 | 23.37 | 2347

others speech segments the bands are approximately equally sta-
tionary. Table 4 shows that when the wavelet filter bank is used,
there are no significant stationarity differences among the frequen-
cy bands. :

5. CONCLUSION

In this work, a thorough subband analysis of the stationary charac-
teristics of speech signals was performed. Several distance mea-
sure techniques were used and a speech ensemble comprising 600
sentences from 2 s to 3 s each one was employed. Results have
demonstrated the folowing: most of distance measures yielded e-
quivalent results. It was verified that for segments of 10 ms the
lowpass band presented a higher level of stationarity when a cosine-
modulated uniform filter bank is used. When a extremal-phase
90-th order Daubechies wavelet filter bank is used there are no ap-
parent stationarity differences among the frequencies ranges for all
segment lengths. Such results can be applied to computationally-
efficient subband coding schemes for speech signals.
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