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ABSTRACT

This paper presents an efficient method for designing FIR filters by
combining the frequency-response masking (FRM) approach with
the WLS-Chebyshev method. With the proposed method, the spec-
ifications for the base filter in the FRM approach can be relaxed.
This is accomplished based on the ability of the WLS-Chebyshev
method for finding a good compromise between the minimum at-
tenuation and total energy within the filter’s stopband. A typical
design performed with the proposed method is included indicating
that the total number of multiplications per output sample required
is significantly reduced.

1. INTRODUCTION

The frequency-response masking (FRM) approach is a very effi-
cient alternative for designing linear-phase FIR digital filters with
large passbands and sharp transition bands. With such method, al-
lowing an increase of the filter delay time, it is possible to reduce
the filter complexity (number of multipliers and adders required
per output sample) when compared to the standard design meth-
ods [1]. In fact, it has been verified that with the FRM approach
without the concept of don’t care bands, the complexity reduction
is to about 48% of the complexity yielded by the standard minimax
approach. When using the concept of don’t care bands, the reduc-
tion increases even further to about 35% of the standard one. This
results from the fact that in practice we can relax the specifications
within the don’t care bands, and increase the weighting within the
important bands of the filters required by the FRM method. Fol-
lowing this procedure, there are two critical bands that occur at
the transition bands of the masking filters, where there is relatively
poor cancellation of the two branches in the filter, and the result-
ing ripple can be significant. In this paper, we introduce the use of
the WLS-Chebyshev algorithm for designing the base filter in the
FRM method, thus restraining the peaks at the critical bands of the
interpolated filter. The result is further reduction in the computa-
tional complexity of the resulting filter to approximately 30% of
the reference one.

The organization of this paper is as follows: In Sections 2
and 3, we describe the main concepts behind the FRM and WLS-
Chebyshev methods, respectively. In Section 4 and 5, we then
combine the two methods and describe the whole procedure for
designing a lowpass prototype FIR filter with reduced computa-
tional complexity.

2. FREQUENCY-RESPONSE MASKING APPROACH

The basic block diagram for the FRM approach can be seen in Fig-
ure 1. In this scheme, the so-called interpolated base filter presents
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a repetitive frequency spectrum which is processed by the positive
masking filter in the upper branch of this realization. Similarly,
a complementary version of this repetitive frequency response is
operated by the negative masking filter in the lower branch of the
realization. In this procedure, both masking filters keep some of
the spectrum repetitions which are then added together to compose
the desired overall frequency response. The magnitude responses
of the filter composing this sequence of operations are depicted in
Figure 2, where one can clearly see the resulting filter with very
sharp transition band.
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Figure 1: The basic realization of a reduced FIR filter using the
frequency-response masking approach.

If the base filter has linear-phase and an even order NV, its di-
rect and complementary transfer functions are given by

N
Hf(z) =Y holi)z " @)
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Hi(z) = 272 =3 ()" @
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respectively, where L is the interpolation factor and h,(n) is the
impulse response of the base filter. From the equations above, we
can readily see that

H (™) =1~ |H (/)] ®

and also that | H; (e’ | can be obtained by subtracting | H;" (e )|
from the signal at the central node in H;F(2).

The cutoff frequencies 8 and ¢ of the base filter (see Figure 2)
depend on L and on the desired band-edge frequencies w, and ws
of the overall filter. The masking filters are simple FIR filters with
band-edge frequencies that also depend on L and on the bands
of the interpolated filter. Therefore the optimal value of L that
minimizes the overall number of multiplications can be obtained
by estimating the lengths of all sub-filters for various L and finding
the best case scenario empirically.
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Figure 2: Frequency-response masking approach, showing the
don’t care bands (single line) and the critical bands (double lines
below the frequency axis).

As the frequency responses in each branch depicted in Figure 2
are complementary, the corresponding passband ripples should can-
cel each other, specially if the two masking filters have approx-
imately the same length. Using the concept of gain margins to
determine the specifications for each sub-filter, we can see from
the construction of the filter [1] that within the noncritical band-
s the overall ripple is approximately the sum of the ripple in one
of the masking filters (depending on the frequency value) with a
second-order term, due to the almost-perfect cancellation of the t-
wo branches. This fact must taken into consideration to determine
the specifications for the passband ripple and the stopband attenu-
ation in each subfilter of the FRM design.

For instance, in a design of a low-pass FIR with a desired
bandpass ripple of 0.1 dB and minimum stop-band attenuation of
40 dB, the necessary worst-case margin at the noncritical bands
is approximately 2.2%, while the worst-case margin at the criti-
cal bands are about 50% of the desired overall ripples. Therefore,
the weighting at the noncritical bands should be relaxed and the
weighting at the critical bands should be increased accordingly
in order to accomplish the margin requirements in all frequency
bands.

3. WLS-CHEBYSHEV ALGORITHM

Using the FRM algorithm to design filters with large passbands
and narrow transition bands, it is verified that the best choices of
L lead, in general, to subfilters of similar orders. Also, the base
filter after interpolation presents a repetitive (dense) frequency re-
sponse whereas the masking filters have a more sparse response
with ripples having comparatively more energy, as we can see in
Figure 3. To explore this fact, we may use a least-squares algorith-
m to design the base filter, yielding a frequency response with a
decaying-peak behavior. However, in order to avoid increasing the
minimum attenuation value, we should employ a WLS-Chebyshev
method when designing the base filter. In such approach, one is
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Figure 3: The behavior of the interpolated-base filter (continuous
line) and the masking filter (dashed line), at the stopband. If this is
one of the critical bands, then the two responses add together and
the resulting filter may not satisfy the specification.

able to positively combine the large attenuation characteristic of
the Chebyshev (minimax) method with the low stopband energy
characteristic of the WLS approximation methods [2]. In fact, the
WLS-Chebyshev design scheme yields a filter response with a par-
tially equirriple and partially least-squares-like stopband response.

In [3] a computationally efficient method is proposed for de-
signing WLS-Chebyshev filters. If the base filter has symmetric
impulse response with a central coefficient, its magnitude response
can be written as

N/2

|Hy ()| =)l (i)trig(w, i) @)

=0

where trig(w, 7) is a proper trigonometric function, hy(n) is the
impulse response for the base filter and IV is the filter order. The
WLS solution in practice minimizes the objective function

€= ZT(Wn)E2(wn) Q)

using a dense grid of frequencies w, where r(wy,) is a nonnega-
tive weighting function and E(w) gives the amplitude error with
respect to the ideal response H (e’), that is

E(w) = |H(e™*)| — |H(™)] (6)

where, in this equation, H (e’*) and H (e’“) represent the desired
and the obtained response for the base filter or the overall filter.
We can use a series of WLS designs to achieve the Chebyshev
(minimax) solution by using a variable weighting function at each
iteration k, as given by [4]

Tet1(wn) = Br(wn)rr(wn) (M
with
_ | Ex (wn)|

An accelerated version, however, proposed in [4] upgrades 7 (wr, )
with the envelope of 8 (w,) defined above. This can be deter-
mined by searching the peaks of | E, (wn )| for every w, and using
a piecewise function joining all these extreme points.
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If the updating of the weighting function in equation (7) is
made constant for a given frequency interval including .J equirriple
peaks, the resulting frequency response becomes WLS-like with-
in this band and quasi-equirriple in the remaining frequencies [3].
In such case, the modified envelope function is as shown in Fig-
ure 4, whereas the typical frequency response of the corresponding
WLS-Chebyshev filter is as depicted in Figure 5.
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Figure 4: Determining the envelope (dotted line) of the absolute er-
ror function to accelerate the minimax convergence, and the mod-
ification in [3] (thick line) to design WLS-Chebyshev filters with
a constraint for the first J=5 peaks.
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Figure 5: Typical frequency response of a WLS-Chebyshev filter.

4. REDUCED FIR DESIGN

In this section, we describe the use of the WLS-Chebyshev algo-
rithm for improving the frequency response at the critical bands of
the overall filter in a FRM design. We start the design by finding
the appropriate values of the cutoff frequencies for the subfilters
and the value of L which will give the best reduction for the fil-
ter. As there is no estimate for the number of the coefficients to
be used in a WLS-Chebyshev design, one can estimate the coeffi-
cients for the minimax approach, and verify the final response of
the filter, reducing the number of coefficients if possible and re-
designing the filter. After this, the masking filters can be designed
with a minimax approach, employing the concept of don’t care
bands, adjusting the weights in each band in such a way that the
critical bands receive higher weights. The next step is to locate the
repetition of the base filter spectrum which is responsible for the

sharp transition of the filter. These frequencies are given by [1]

wy = m% 9)

ws = (m+ 1)% (10)

where m is the largest integer such that w- is immediately below
the largest cutoff frequency w, of the masking filters. These two
frequencies, w1 and w-, are the centers of the first and second crit-
ical bands, respectively. Once these frequencies are found, we can
map the masking filter responses over the base filter response, and
estimate the resulting error as given in equation (6), with
[H(e™)| = |Hh(e/*)H; () + Hy (/) Hi ()]
|H () H (€7) + Hi ()1 — Hif ()|
(1)

over the interval w € w1, w2]. As we are interested on optimizing
the base filter, we can map the frequency responses of the masking
filters back to the frequency interval [0, 7], yielding

[H(e7)| = [H (e ) Hy(¢7) + Hyp () [1 = Hy(e*)]]
(12)

with, in this case, 0 < w < 7, and
W =wi + (w2 — wl)%J (13)

if the positive masking filter has cutoff frequencies below the neg-
ative masking filter, or

W =ws — (wz - wl)%J (14)

if the positive masking filter has cutoff frequencies above the neg-
ative masking filter cutoff. This definition of w’ means that de-
pending on which of the two branches is responsible for the last
part of the passhand, one needs to do a direct or inverse mapping
on the frequency, according to equations (13) or (14), respective-
ly. The last step is to determine the peak-constrained frequencies.
For this project, we use the first bandstop peak (“side-lobe”) of the
masking filter. In the frequencies above this peak, it is supposed
that the least-squares part of the base filter will cancel the other
peaks of the masking filters. Thus, in each iteration, we seek for
the first bandstop peak to determine where the envelope function is
kept constant. Once the peak-constrained frequencies are known,
the optimization algorithm can be applied to design the base filter.
In Table 1 we see the design results for various frequencies spec-
ifications. Usually, the interpolation factor should be dependent
of the sharpness of the transition band, but it can also be different
for the two algorithms. By using the same value of L in both al-
gorithms, it is easier to compare the results, because the subfilters
will keep the same frequency specifications for both algorithms,
thus avoiding the masking filter to operate on different bands of
the interpolated base filter.

5. NUMERICAL EXAMPLE

As an example, we show the design of a lowpass reduced FIR fil-
ter, with cutoff frequencies of w, = 0.657 and ws = 0.667, max-
imum ripple at the passband of 0.2dB and minimum attenuation
at the stopband of 40dB. The direct FIR filter implementation us-
ing a minimax design will require 382 coefficients, while using a
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Table 1: Results obtained by using various frequency specifica-
tions. For these designs, the maximum allowable ripple at the
passband is 0.2dB and the minimum attenuation is 40dB at the
stopband.

Specifications Minimax WLS-Chebyshev
wp We L | Red. Fact. | L | Red. Fact.
0.1I787 | 0.180x | 14 14.74% 14 12.85%
0.2407 | 0.2457 | 10 23.72% 10 21.63%
0.327 0.337 8 34.91% 8 31.25%
0.657 0.667 7 34.82% 7 30.1%

standard FRM minimax with don’t care bands the number of co-
efficients is reduced to 133 for the optimum choice of L = 7. By
using a quasi-equirriple WLS design [4] on the masking filters, we
obtain the frequency-response depicted in Figure 8 (dashed lines).
We can then notice from this figure, that by using J = 5 equirriple
peaks in the WLS-Chebyshev design of the base filter we are able
to restrict the critical peaks of the overall design. The overall filter
amplitude response is shown in Figure 6, while in Figures 7 and 8
we see all the response at the critical bands.
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Figure 6: Amplitude response for the example filter.
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Figure 7: Amplitude response at the first critical band for the
example filter (continuous line) and the response of the positive
branch (dashed line).

For this design, the result and the comparison between the
minimax and the proposed approaches are shown in Table 2. In
this table, M denotes the number of coefficients for each of the
sub-filters, Mr,, is the total number of coefficients (multipliers)
on the resulting filter, and the last column is the reduction factor,

L L
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Figure 8: Amplitude response at the second critical band for
the example filter (continuous line) and the responses of the two
branches of the filter (dashed lines).

given by Mr,. divided by the number of coefficients required by
the direct implementation.

Table 2: Comparison between the designs using the minimax and
the WLS-Chebyshev algorithms.

Algorithm | L' | M, | M | M_ | Mr,: | Red. Fact.
Minimax 7 65 39 29 133 34.82%
WLS- 7 57 32 26 115 30.1%
Chebyshev

6. CONCLUSIONS

We introduced a new design method for FIR digital filters. The
proposed method combines the WLS-Chebyshev approach with
the frequency-response masking (FRM) method. The main advan-
tage on the WLS-Chebyshev algorithm is the flexibility to work
with the weighting function, given any arbitrary error function.
We can then design the FRM base filter with a relaxed set of spec-
ifications, using the WLS-Chebyshev design. The result is a com-
putationally efficient prototype filter.
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