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ABSTRACT

This paper proposes a new transform for musical audio
signals. The new transform, so-called modified constant-�

fast filter bank (mC
�

FFB), yields a log-like description
in the frequency domain with improved frequency response
when compared to the standard DFT. The improved fre-
quency response of the mC

�
FFB is achieved by interpret-

ing the sliding-DFT (sDFT) as a multi-stage filter bank, and
substituting the sDFT basic filter in this description by a
higher-order filter with improved characteristics. The loga-
rithm spectral scale of the mC

�
FFB is achieved by the ade-

quate resampling of a chosen channel filter. We also discuss
implementation issues related to the mC

�
FFB and exem-

plify its application to the analysis of musical signals.

I. INTRODUCTION

The discrete Fourier transform (DFT) is the standard tool
to perform signal analysis in the frequency domain [1],
when using a computer. However, the DFT is not com-
pletely suitable to analyze musical audio signals, as the
resulting linear-frequency scale tends to concentrate too
much information in the high-frequency region. In addi-
tion, in a filter-bank perspective, the DFT can be shown to
present significant superposition between neighboring fre-
quency bands. These two facts motivates the introduction
of a new transform with a constant-

�
(log-like) behavior

in the frequency domain with improved frequency response
when compared to the DFT. The new transform, hereafter
called modified constant-

�
fast filter bank (mC

�
FFB), is

then proposed as a combination of two techniques previ-
ously known in the literature: the constant-

�
transform

(C
�

T), introduced in [2], [3], which yields a signal decom-
position in a logarithmic frequency scale; and the fast filter
bank (FFB), presented in [4], [6], which is characterized by
low levels of interference between neighboring bands in the
frequency domain.

To introduce the mC
�

FFB, this paper is organized as fol-
lows: In Sections II and III brief descriptions of the C

�
T

and FFB are given. Section IV then presents the mC
�

FFB,
combining the log-like frequency description of the C

�
T

with the selective frequency response of the FFB. A com-
puter experiment is included in Section V, illustrating the
mC

�
FFB suitability to analyze musical audio signals.

II. CONSTANT-
�

SPECTRAL TRANSFORMATION

Considering the usual musical notation, the semitone can
be seen as the basic unit for measure of note intervals. The
equal-temperament scale adopts a constant ratio of � �� � be-
tween the frequencies of notes located one semitone apart
from each other, which means their difference is around 6%.
As an example, along the audible spectrum, a single semi-
tone down the superior edge (20000 Hz) spreads over 1123
Hz, while the same frequency range in Hz up the inferior
edge (20 Hz) would be equivalent to 70 semitones (recall
that a modern piano covers 88 notes)! This indicates that
the linear-frequency description of the DFT gives an inef-
ficient description for musical audio signals. For these sig-
nals, a log-like spectral analysis tends to be more appropri-
ate, since it allows harmonic frequencies to be represented
in equal intervals.

The standard C
�

T can analyze the signal into compo-
nents given by the following frequencies:

	 � 
 � � � � � �
� 	 � � � �

(1)

for � 
 � � " � # # # � % ' ) " ,
, where - defines the frequency

resolution in fractions of a semitone. For instance, - 

�� yields a quarter-tone resolution, which corresponds to a
selectivity factor

�
equal to

� 
 	 �
% / 	 , 2 4 6 
 	 �

� � � � 8 ) " 	 � ; = > #
(2)

In order to force a constant
�

factor, one can then analyze
the input signal using a distinct number of points to deter-
mine each frequency component, as given by

' � 
 	 ?
% / 	 , 2 4 6 
 	 ? �

	 � #
(3)

The index � associated to
	 �

in a corresponding DFT with' �
points and sample frequency

	 ?
should be the selectivity

factor
�

itself. One can then modify the DFT, using a vari-
able number of points as given in equation (3), to determine
the C

�
T of a signal C % E ,

as

G 2 4 6 % � , 
 "
' �

I J K �
L M N C % E , P K Q � RS J 4 L

(4)
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for � � � � � � 
 
 
 � � � � � �
.

In this framewok, to satisfy the Nyquist condition, we
must have

� � �
� � � � � � � � � � 


(5)

It should be noticed that the C
�

T cannot be inverted, since
the number of input samples is larger than the window size
for higher frequencies.

III. FAST FILTER BANK

The sliding-DFT (sDFT) can be described in the ! do-
main as

" $ % ' � ! � � ) + ,
- . 0 ! - 1 � -) � � � ! 1 �) )

� � ! 1 �)



(6)

The FFB, to be reviewed below, is a modification of the
filter-bank description of the sDFT as given in the following
lemma.
Lemma A: For

� � � 6 , the
�

-point sDFT
� ! �

operator can
be written in the following form:

" $ % ' � ! � � 6 + ,
- . 0

� 9 ! 1 �) : ; 

(7)

Proof by finite induction: For < � �
, or

� � � , equa-
tion (6) becomes

" $ % ' � ! � � � � ! 1 �
: :� � ! 1 �

:
�

(8)

and equation (7) becomes

" $ % ' � ! � � � 9 ! 1 �
:

�
(9)

which are equivalent. Now assuming that equations (6)
and (7) are equivalent for a given < , then

� � ! 1 �
: A : A� � ! 1 �

: A
� 6 + ,

- . 0
� 9 ! 1 �

: A : ; 

(10)

Multiplying both sides by
� 9 ! 1 �

: A : A , we get

� � ! 1 �
: A : A B C� � ! 1 �

: A
� 6

- . 0
� 9 ! 1 �

: A : ; �
(11)

which is the same as equation (10) for < D � < 9 �
. This

completes the proof.

It should be noted that the computational complexity of
the sDFT is in the order of

�
, as indicated in [5].

Example 1: From equation (6), channel 34 (associated to
the quarter-tone C

�
T) of a 256-point sDFT is described by

E F
G

� ! � � J
- . 0

� 9 ! 1 F
G: K L : ;

� N 0 O F
GP � ! � N , O L QP � ! � N : O ,

F
LP � ! � N F O , LP � ! �

N G O F
:P � ! � N K O L GP � ! � N L O , : QP � ! � N J O 0P � ! � �

(12)

where
N - O TP � ! � � � � 9 ! : ; 1 T) �

, with Y � [ � ] ^ ` � - �
a c e � g

. According to [4] and using the fact that
� ] ^ �

, 0 �
� � � � � � � � � �

: , a slightly different notation would be used,
yielding

E F
G

� ! � � E J O F
GP � ! � E L O , JP � ! � E K O Qm � ! � E G O GP � ! �

E F O :P � ! � E : O ,P � ! � E , O 0m � ! � E 0 O 0P � ! � �
(13)

where
E - O TP � ! � � � � 9 ! : p r s C s ; t 1 v T) �
E - O Tm � ! � � � � � ! : p r s C s ; t 1 v T) � (14)

with w Y being the bit-reversed version of Y in
� x � � �

bits or,
equivalently, w Y � [ � ] ^ ` � { + , + - � a c e � � } � � g

. Thus,
after using the property

� 1 �) � 1 �
� �

�) �
(15)

one can verify that equation (13) is identical to equa-
tion (12).

The magnitude response of channel 34 in the 256-point
sDFT is depicted in detail by the dash-dotted line in Fig-
ure 1, where one can readily see the first sidelobes 13 dB
below the channel passband.
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Fig. 1. Magnitude responses of channel 34 of the 128-point sDFT (dash-
dotted line) and FFB (solid line).

The FFB is generated from the sDFT by substituting the
first-order prototype filter in equation (7),

N 0 O 0P � ! � � � 9 ! �
(16)
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by a set of halfband filters
� � � �� � � �

(one for each level � )
with improved frequency response [4]. Any FFB channel
can then be determined in a similar fashion as in Example 1
above.
Example 2: The transfer function related to channel 34 in
a 256-point FFB has a form similar to equation (12), with
the corresponding

� � � �� � � �
filters specified by the designer.

The solid line in Figure 1 depicts the magnitude response of
such channel using the filters given in Table I [4].

TABLE I

FFB SUBFILTER COEFFICIENTS [4] (ALL 	 � 
 �� � � � � � � � � � � AND

	 � 
 �� � � ! � � 	 � 
 �� � ! � ).
$ 	 � 
 �� � � � 	 � 
 �� � % � 	 � 
 �� � ' � 	 � 
 �� � ( � 	 � 
 �� � ) � 	 � 
 �� � � � �
0 0.62764 -0.18648 0.08816 -0.04299 0.01895 -0.00695
1 0.61750 -0.16013 0.05558 -0.01493
2 0.57374 -0.07526
3 0.56535 -0.06543
4 0.50191
5 0.50048
6 0.50000
7 0.50000

IV. MODIFIED CONSTANT-
*

FAST FILTER BANK

The combination of the constant-
*

behavior of the C
*

T
with the improved frequency response of the FFB yields a
very interesting tool for the analysis of musical audio sig-
nals. However, such combination is not straightforward:
The C

*
T performs the DFT of time-sequences with a vari-

able number of samples, as given in equation (3), in order
to control the channel bandwidths adequately. On the other
hand, each FFB channel is built as a cascade of half-band
filters, which would be analogous to require that the under-
lying DFT had been computed from a power-of-two number
of samples. Therefore, to achieve the symbiotic combina-
tion between the C

*
T and the FFB techniques, we must

overcome this discrepancy between the two techniques.
In [7], the arbitrary number of time-domain samples em-

ployed by the C
*

T was adapted to the power-of-two in-
teger implicitly required by performing the resampling of
the input signal. The resulting technique was the so-called
constant-

*
fast filter bank (C

*
FFB). In the present paper,

however, we introduce the so-called modified constant-
*

fast filter bank (mC
*

FFB), which is obtained by a general-
ization of the FFB technique via the resampling of the im-
pulse response of one FFB channel filter. In that manner, the
number of input-signal samples required by the DFT under-
lying to the modified FFB can be made equal to the number
of samples required by the standard C

*
T. One should note

that in the C
*

FFB the resampling operation is performed
on-the-fly along the input signal, while in the mC

*
FFB the

impulse responses of the filters (which are fixed) are resam-
pled, meaning that this operation can be made only once,

before the signal processing. This is the main direct advan-
tage of the later over the former.

A proposed algorithm for the implementation of the
mC

*
FFB is given in Table II. In this algorithm,

+ -
is

the input-signal sampling frequency,
+ . 0 1

is the initial fre-
quency to be analyzed, and 2 defines the spacing between
two adjacent frequency samples in fractions of a semitone
according to equation (1). See Example 3, below, for some
possible values for these variables. In Step 2 of the pro-
posed algorithm, the impulse response 3 5 of the prototype
filter can be designed as an FFB channel filter. From equa-
tions (1) and (2), the selectivity factor is computed by

* 7 8
9 : ; = ? @ 8 B

(17)

In Step 3, the resampling of the impulse response 3 5 can be
performed by a general function

3 D 7 G I K M N O P I � 3 D R =
S + D S + D R =

� S
(18)

for U 7 9 S B B B S V
, with 3 =

7 3 5 and
+

=
7 + . 0 1

.The re-
sampling factor is given by the ratio between

+ D
(defined in

equation (1)) and
+ D R = .

TABLE II

ALGORITHM FOR IMPLEMENTING THE MC Z FFB.

Step 1: Define [ \ , [ ] _ ` , and a .
Step 2: Obtain the impulse response b c of the prototype filter,

with central frequency [ ] _ ` and selectivity factor Z .
Step 3: Resample b c , changing its middle frequency to [ g in

each filter.
Step 4: Use the filters obtained in Step 3 as the modified FFB

channel filters.

V. COMPUTER EXPERIMENT

Example 3: To verify the usefulness of the mC
*

FFB tech-
nique, we generated a test signal h � j �

composed of three
musical tones at 164.8138 Hz (E), 195.9977 Hz (G), and
261.6256 Hz (C). In this example, we implemented the
mC

*
FFB algorithm with a sampling rate of

+ - 7 l l B 8
kHz;+ . 0 1 7 8 q r B s

Hz, corresponding to C3, as the initial fre-
quency sample; and 2 7 8 l (or

*
=34), corresponding to a

quarter-tone resolution, thus requiring a total of 24 channels
per octave.

This signal was processed by the sDFT, FFB, C
*

T, and
mC

*
FFB tools, all with 100 frequency bands between

130.8 and 2282.4 Hz (corresponding to C and halfway be-
tween C# and D, respectively), for the sake of uniformity.
For the C

*
T and C

*
FFB, we had

* 7 q l , corresponding
to a quarter-tone frequency resolution. Meanwhile, for the
sDFT and FFB, which perform a linear frequency sampling,
the resulting frequency resolution was equal to 21.5 Hz.

The output magnitudes obtained through all four analysis
tools for the input signal h � j �

are depicted in Figure 2. In
this figure, the peaks corresponding to a given tone (its fun-
damental frequency and related harmonics) are designated
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by the same symbol. In that way, characters ‘+’, ‘o’, and ‘x’
indicate E, G, and C, respectively. From this figure, one can
clearly notice the poorer low-frequency resolution yielded
by the sDFT (Figure 2(a)) and the FFB (Figure 2(b)) due to
their inherent linear frequency sampling: in particular, they
did not identify the fundamental component of G, which
was hidden by the fundamental component of E. In addi-
tion, by comparing the low-magnitude portions of each sub-
figure, one can observe the effects of lower selectivity in the
magnitude responses of the sDFT (Figure 2(a)) and C

�
T

(Figure 2(c)). Finally, Figure 2(d) depicts the mC
�

FFB
magnitude response, which shows all three musical tones
and their corresponding harmonics in a clear and sharp way.

VI. CONCLUSION

In this paper, we reviewed the constant-
�

transform
(C

�
T), presented in [2], and the fast filter bank (FFB), in-

troduced in [4]. A novel transform, the so-called modified
constant-

�
fast filter bank (mC

�
FFB), was then proposed,

by combining the C
�

T with a modified version of the FFB.
The mC

�
FFB is then characterized by a log-like descrip-

tion with improved frequency response. These two features
combined make the mC

�
FFB especially suited for audio

applications, as illustrated by a computer experiment.
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Fig. 2. Example 3: Magnitude responses of 100-point transformations of
an input signal composed by three tones: (a) sDFT; (b) FFB; (c) C� T;
(d) mC� FFB.
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