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ABSTRACT
This paper introduces a new transform intended for audio

processing. The proposed transform exhibits two interest-
ing features in the frequency domain, namely: a constant- �
characteristic and a steep response for each output channel.
Constant � implies that the spectral description of the trans-
formed signal is performed along a log-like scale, as op-
posed to the linear scale of standard transforms, such as the
discrete Fourier transform (DFT). The consequent variable
resolution makes the new transform especially suited for the
analysis of musical audio signals. The improved frequency
response, as compared also to the DFT, is achieved by its
implementation as a bank of very selective filters based on
the frequency-response masking (FRM) approach. Such se-
lectivity results in higher isolation between adjacent chan-
nels of the overall transform. Application of the new trans-
form to the analysis of musical signals is illustrated through
a computer experiment.

I. INTRODUCTION

The discrete Fourier transform (DFT) is a powerful tool
for signal analysis, constituting a true mathematical bridge
between time and frequency domains [1]. The DFT-based
analysis, however, can be shown to present significant inter-
ference between the outputs of adjacent channels. In addi-
tion, considering the way the occidental musical scales were
historically built, one can deduce that for musical audio
signals, a logarithmic frequency representation would be
more natural than the linear-frequency scale inherent to the
DFT. This paper then proposes a new transform which at-
tempts to overcome these two drawbacks related to the DFT.
The new transform, the so-called constant- � fast filter bank
(C � FFB), is generated by the combination of the constant-� transform (C � T) introduced in [2], [3] with the improved
response characteristic of the fast filter bank (FFB), based
on the frequency-response masking (FRM) approach and
presented in [4], [5], [6].

The remaining of this paper is organized as follows: In
Section II a brief description of the C � T is provided, focus-
ing on the positive aspects of having a log-like frequency
scale. In Section III, the sliding fast Fourier transform
(sFFT) is interpreted under a filter-bank perspective for im-
plementing the DFT. The FFB is then described in Sec-

tion IV as a generalization of the sFFT, whose prototype
filters can be replaced by more selective ones to achieve
an improved frequency response. Section V presents the
novel C � FFB, combining the positive issues of the C � T
(log-like frequency scale) and the FFB (selective frequency
response). Finally, computer experiments are included in
Section VI to illustrate the capability of the C � FFB to an-
alyze musical audio signals. Computational complexity is-
sues will be addressed in a future paper.

II. THE CONSTANT- � SPECTRUM
TRANSFORMATION

When using the DFT to analyze musical audio signals,
the resulting linear frequency scale yields a badly balanced
signal description, since it concentrates too much informa-
tion in the high-frequency region.

In [2], a constant- � method, which allows the description
of the frequency domain in a logarithmic scale, is presented
as a tool for the analysis of musical audio signals. A strong
motivation behind a constant- � transform (C � T) is to allow
harmonic frequencies to be represented in equal intervals in
the transform domain. In that manner, any fundamental fre-
quency together with its associate harmonics define a linear
pattern which can be easily identified.

For the DFT, the frequency resolution � � � 
 �  � is a con-
stant value, given by the sampling frequency � � divided by
the total number of samples � being transformed:

� � � 
 �  � � � �
� � (1)

The � frequencies directly represented are

� � � �� � � � (2)

for � � � �  � � � � � � � $  
 .
The standard C � T decomposes the signal into compo-

nents given by the following frequencies:

� � � % & ' ( ' * + - � � / 1 2 � (3)

for � � � �  � � � � � � � $  
 , where 5 defines the frequency
resolution in fractions of a semitone. Then, 5 � '* corre-
sponds to a quarter-tone resolution, which suffices for many
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applications. Such resolution corresponds to a selectivity
factor

� � � �
� � � � � � 	 � � ��


 �  � � � � � � � 	 �
� � � 
 �  	  � � (4)

To achieve a constant � , one should use a variable number
of points

� � � � �
� � � � � � 	 � � � �

� � (5)

to determine each transform sample. Noticing that now

� � � �
� � � � � (6)

we get that for the C � T the index � equals the selectivity
factor � . We then define the C � T of a signal � � � � based
on the definition of the DFT, but with the number of points
given by equation (5), that is,� � � 	 � � � � �

� �

� � �
��� � � � � � � � � � � � �  � " $ &' � � �

(7)

for � � � � � � � � � � � � � � � , where � � � � � � is a windowing
function used to reduce blocking effects. A Table listing the
characteristics of a 156-channel C � T for a sampling rate of

� � �  
 kHz can be found in [2].

III. THE SLIDING FFT

The � -point sliding FFT (sFFT) can be seen as the oper-
ation [4] � � � � �

� �
�� * � � � � � - / � 0 �

*�
� 2 � �

�� * � � 4 � * 0 �
*� 6 8 � � � � : � (8)

where 4 is the delay operator, such that 4
* 8 � � � � : � � � � �/ � and 0 � �  � " $ &' . Hence, in the = domain, the sFFT

operator can be expressed as> ? ? @ � = � �
� �

�� * � � = * 0 �
*� � C �

�D* � � F � - � = 0 �� � � I K � (9)

where L � N O P � � . The FFB, to be reviewed in the next
section, is a generalization of the sFFT which results from
describing the sFFT � = � as indicated in equation (9).
Example 1: Using equation (9), the transfer function of
channel 34 (linked to the quarter-tone C � T) of a 256-point
sFFT is given byQ S � � = � � UD* � � F � - � = 0 S �� W X � � I K

� Z � \ S �] Z � \ X ^] Z � \ �
S X] Z S \ � X] Z � \ S

�] Z W \ X �] Z X \ � � ^] Z U \ �] �
(10)

where`aaab aaac Z � \ S �] � � - = � 0 S �� W X e Z � \ X ^] � � - = � 0 X ^� W XZ � \ �
S X] � � - = � 0 �

S X� W X e Z S \ � X] � � - = ^ 0 � X� W XZ � \ S
�] � � - = � X 0 S

�� W X e Z W \ X �] � � - = S
� 0 X �� W XZ X \ � � ^] � � - = X � 0 � � ^� W X e Z U \ �] � � - = � � ^ 0 �

� W X �

(11)

such that Z * \ "] � � � - = � I 0 "� � , with h � j �  � l 


*
�m n p � q . The corresponding magnitude response of chan-

nel 34 is depicted in Figure 1, where one can readily see
that the first sidelobes are 13 dB below the channel pass-
band. In order to normalize the sFFT response to the 0 dB
level, the channel transfer function should be scaled by a
factor of r � 
 � t n u

� � � � � v � 
 dB.
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Fig. 1. Example 1: Magnitude response of channel 34 of a 256-point sFFT.

IV. THE FAST FILTER BANK

In equation (9), following the description in [4], the factorZ � \ �] � = � � � - = 0 �� (12)

can be seen as the kernel filter of the sFFT � = � , since all other
factors can be derived from it following a frequency scaling
operation = 0 �� y � = 0 �� �

*
� (13)

A general fast filter bank (FFB) can be then generated
from the sFFT by substituting the first-order kernel filterZ � \ �] � = � by any other filter. Of course, higher order filters
can yield improved frequency responses [4].
Example 2: Figure 2 depicts the magnitude response of
channel 34 of a 256-point FFB using the filters given in [4].

Another interpretation for the FFB, based on the
frequency-response masking (FRM) approach [7], is given
in [6], where alternative FFB subfilters are also provided.
Applications of the FFB include a programmable filter [6]
and automatic music transcription [8].
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Fig. 2. Example 2: Magnitude response of channel 34 of a 256-point FFB.

V. AN IMPROVED CONSTANT- �
TRANSFORMATION

The so-called constant- � fast filter bank (C � FFB) was
devised as a blend of the C � T and FFB techniques. In
that manner, we combine the constant- � behavior of the
C � T with the improved frequency response of the FFB. To
achieve such symbiotic combination, however, we must first
overcome a discrepancy between these two techniques. In
fact, while the C � T calls for a variable number of time-
domain samples to compute each frequency-domain sam-
ple, as given in equation (5), the FFB requires the under-
lying DFT to be computed from a power-of-two number of
time-domain samples. The adopted strategy was to modify
the C � T in the following way: instead of varying the num-
ber of input samples employed to compute each output sam-
ple in order to guarantee constant � , we keep the number of
input samples fixed as a power-of-two integer and change
accordingly the sampling frequency, which becomes

� � � � � � � � 	
� 
 (14)

with � � defined by equation (3), as before. After such modi-
fication, considering the quarter-tone resolution ( � =34), the
Nyquist criterion requires

� � � � � � � � � � 	 � � � � 	 �  � � 
 � 	 � 
 � � � � (15)

Naturally, resampling of the input signal may need to in-
clude some kind of anti-aliasing filtering. In a preliminary
version of the C � FFB we used the MATLAB R



command

resample.
Table I lists the characteristics of the 156-channel C � T,

which uses a fixed sampling rate � � � � � �  kHz, and
C � FFB, which uses a fixed number of 	 = 256 samples
in each channel.

VI. COMPUTER EXPERIMENT

Example 3: We formed a test signal � � � � composed by
six sinusoids of different frequencies 185.0, 196.0, 587.3,
622.3, 1046.5, and 1108.7 Hz (corresponding to F#, G, D,

TABLE I

CHARACTERISTICS OF THE 156-CHANNEL C � T (WITH � � � � � � �
KHZ) AND C � FFB (WITH � � � � � SAMPLES), BOTH WITH A

SELECTIVITY FACTOR � � � � .

Channel Midinote �  �  � � $ & ( Time
[C � T] [C � FFB]

(Hz) (samples) (Hz) (ms)
0 53 175 8568 1318 194.3
6 56 208 7209 1566 163.5
12 59 247 6070 1860 137.6
18 62 294 5100 2214 115.6
24 65 349 4296 2628 97.4
30 68 415 3613 3125 81.9
36 71 494 3035 3720 68.8
42 74 587 2554 4420 57.9
48 77 699 2145 5263 48.6
54 80 831 1804 6257 40.9
60 83 988 1518 7439 34.4
66 86 1175 1276 8847 28.9
72 89 1398 1073 10526 24.3
78 92 1664 901 12529 20.4
84 95 1978 758 14893 17.2
90 98 2350 638 17649 14.5
96 101 2797 536 21060 12.2
102 104 3327 451 25050 10.2
108 107 3956 379 28536 8.6
114 110 4710 318 35464 7.2
120 113 5608 267 42225 6.1
126 116 6675 225 50259 5.1
132 119 7942 189 59799 4.3
138 122 9461 158 71236 3.6
144 125 11216 134 84450 3.0
150 128 13432 112 101135 2.5

D#, C, and C#, respectively), sampled at a rate of � � � � � � 
kHz. The entire signal has a total of 44100 samples, or 1
s. This signal was processed by the sFFT, FFB, C � T, and
C � FFB tools, all with 100 frequency bands between 130.8
and 2282.4 Hz (corresponding to C and halfway between C#
and D, respectively), for the sake of uniformity. Hence, the
frequency resolution for the sFFT and FFB, which perform
a linear frequency sampling, was

� � � � * � � � � � � � � � � + � � � � � � � �  	 � � �

 � � � �  � 	 - / � (16)

Accordingly, for the C � T and C � FFB we had � � 	 � , cor-
responding to a quarter-tone frequency resolution, as sug-
gested before.

The output magnitudes obtained by all four analysis tools
for the input signal � � � � are depicted in Figure 3. The sFFT
response can be seen in Figure 3(a), from which one may
notice that the sFFT yielded a nonzero spectrum for all fre-
quency components and it was unable to resolve properly
the low-frequency signal components. The FFB response
is shown in Figure 3(b), where one may easily see that al-
though the FFB was able to point out the purely sinusoidal
characteristic of the input signal, it was not able, however,
to separate properly the two low-frequency components. In
Figure 3(c), the response of the C � T indicates that it suc-
ceeds in analyzing all sinusoidal components clearly, while
presenting some sort of noisy behavior throughout the spec-
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trum. Finally, Figure 3(d) depicts the magnitude response
of the proposed C � FFB, which is able to show clearly the
sinusoidal nature of the input signal, due to its selective re-
sponse, with all six components clearly visualized, due to
its logarithmic frequency scale.

VII. CONCLUSION

In this paper, two techniques previously known in the lit-
erature were reviewed, namely: the constant- � transform
(C � T), presented in [2], and the fast filter bank (FFB), in-
troduced in [4]. A novel transform was then proposed, ex-
hibiting a constant- � characteristic, as opposed to the linear
frequency resolution of the FFB (including the traditional
sFFT), and improved frequency response, if compared to
the standard sFFT-like response of the C � T. These two fea-
tures combined together make the so-called constant- � fast
filter bank (C � FFB) especially suitable for audio applica-
tions, including analysis, coding, and transcription, as indi-
cated by a computer experiment.
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Fig. 3. Example 3: Magnitude responses of 100-point transformations of
an input signal composed by six sinusoidal components: (a) sFFT; (b)
FFB; (c) C � T; (d) C � FFB.

V - 547

➡ ➠


