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ABSTRACT

This work presents a new version, with reduced computa-
tional complexity, of the covariance-based direction-of-arriv-
al (CB-DoA) algorithm. The new algorithm incorporates the
concept of beamspace projection before performing the DoA
estimation. Such modification reduces the dimensions of the
matrices employed by the elementspace CB-DoA, simplify-
ing the resulting computations while preserving the detectabil-
ity of the original algorithm. The Beamspace CB-DoA al-
gorithm is compared to the traditional algorithm Beamspace
ESPRIT, as well as to elementspace CB-DoA.

1. INTRODUCTION

In mobile communication systems, the concept of cellular di-
vision has emerged as a new paradigm. Cellular-based sys-
tems present some advantages in comparison to the previ-
ous single cell systems, such as serving more users, using
less power during transmission, and requiring a comparatively
narrower bandwidth [1]. In order to effectively reduce the
bandwidth, the logical channels are reused in non-neighbour-
ing cells. This is illustrated in Fig. 1, where cells with the
same pattern use the same range of logical channels. In this
figure, for the mobile represented in the central cell, the an-
tenna transmitting in a similar non-neighbouring cell is a po-
tential source of the so-called co-channel interference (CCI).

Spatial filtering has recently emerged as a powerful al-
ternative to mitigate CCI. When the location of the desired
source is known, information coming from all other positions
can be reduced greatly.

Consider a communications system with multiple trans-
mitting sources and multiple receiving antennas. Suppose the
transmition medium to be isotropic, the sources to be located
in the far field of the receiving array, and the sources and the
receiving array to be co-planar. With these assumptions, lo-
calizing the sources is equivalent to measuring the direction-
of-arrival (DoA) of the receiving waves, as represented in
Fig. 2, where the angle 6 is the parameter to be estimated.

The first DoA estimation algorithms were based on the
maximum likelihood (ML) concept, which is very compu-
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Fig. 1. Frequency reuse for a cell-based system.
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Fig. 2. Angle estimated by DoA algorithms.

tationally demanding [2]. Later, some sub-optimal alterna-
tives to ML were developed, such as ESPRIT (estimation of
parameters via rotational invariance techniques) [3], which
present less computational requirements. In order to decrease
the number of operations, ESPRIT imposes an aditional con-
straint over the geometry of the receiving antennas: The re-
ceiving array is divided into pairs of antennas (doublets) with
a constant displacement between them.

Based on matrix pencil methods for harmonic retrieval
[4], the elementspace CB-DoA algorithm [5] is a simpler al-
ternative to ESPRIT, imposing the same constraints to the
receiving array geometry. A further simplifying technique,
commonly referred to as the beamspace approach [6] [7], may
be regarded as sectorizing the range of angles of arrival, spe-
cially when DFT beamspace is used. Such sectorization al-
lows parallel computation of the sub-bands.
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The main objective of this article is to incorporate this
beamspace concept to the CB-DoA algorithm to further de-
crease its computational complexity. For that matter, this pa-
per is structured as following described: In Sections 2 and 3,
the beamspace versions of the ESPRIT and CB-DoA algo-
rithms are described, respectively. The computational com-
plexities of these two algoritms are compared in Section 4 and
Section 5. Section 6 presents simulation results achieved by
the proposed technique, comparing its performance with the
Beamspace ESPRIT algorithm and the theoretical Cramer-
Rao Lower Bound (CRLB).

2. BEAMSPACE ESPRIT

Consider a MIMO (multiple-input multiple-output) environ-
ment with M transmitting narrowband sources and N receiv-
ing antennas, with N > M, as represented in Fig. 3. More-
over, assume that each sub-channel suffers interference from
an additive white Gaussian noise (AWGN) with variance o%;.
The antennas in the receiving array are constrained to be uni-
formly spaced. At time t, let s, (¢) represent the signal trans-
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Fig. 3. MIMO Environment.

mitted by the m™ antenna, with 0 < m < (M — 1), and let
x;(t) be the signal impinging in the i receiving antenna, with
0 <4 < (N —1). Considering that the incoming signal from
the m™ source reaches the " antenna with an angle denoted
by 6,,, the gain provided by the antenna for such an angle is
represented by a; (6, ).

If n, ;(t) represents the noise components received by the
i" antenna, the description of the received signals as functions
of the transmitted signals is given by [3]

M—-1

zi(t) = D sm(t)ai(Om) + nai(t). (1

m=0

By defining the following auxiliary vectors and matrices
in the discrete-time domain k

x(k) = [ wo(k) @:i(k) enoa(k) ], )
g (k) = [ nao(k) na1(k) nan-1(k) °, 3)
s(k) = [ so(k) s1(k) suak) ], @

ao(0rr—1)

O
a=| ™ ol )
an—1(00) an—1(6) .. an_1(Or—1)

then the input-to-output relationships given in Equation (1)
can be rewritten as

x(k) = As(k) + n, (k). (6)

Consider selective matrices J; and J, defined by
Ji = [Lxxrr Oirx(n—K)}] (7
Jo = [0rxv-r)y Lirxky], (8)

such that J1J{/ = J,JI = 1, where I denotes an identity
sub-matrix and O denotes a sub-matrix containing only zeros.

If § is the constant displacement between adjacent receiv-
ing antennas, matrix A has a Vandermonde structure, giving
rise to the expression

JIA = J,APT )
with

. jwd jwd Jws o
'I>=d1age 2 sm(OU),e 2 sm(Gl)’-“’e 2= sin(Oar—1) ,

(10)
where w is the frequency of the narrowband signal and c is
the speed of light.

In the beamspace approach, the signal vector x(k) is pro-
cessed by orthogonal transforms T';, with dimensions N x L,
where L < N. Then, considering that the AWGN is uncorre-
lated to the sources, a covariance model for the system is

R, = TTAR,AYT; + 031, (11)

where R, and R denote the autocorrelation matrices of the
received and transmitted signals, respectively.

For the Beamspace ESPRIT to work properly, T; A must
retain the rotational invariance property of A. In [6], the

transform T; can be applied to x(k) if it satisfies
J1T; = Jo T, F, (12)

for a full-rank L x L matrix F. Let t;, for 0 < ¢ < (N — 1),
be the i column of T . If a matrix Q exists, such that

FH¢, = <i<N-K
{Q ti=0, 0<i< : 1%

Qt; =0, K <i<N,

then one can write, using equations (9) and (12) and the basic
properties of J; and Jo, that

QTYA = QTHIJ, A
= QTH I J, A"
= QFITHAJI 3, A9

= QFATHA®H, (14)
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Then, an eigendecomposition is performed on R, and its
eigenvectors belonging to the signal subspace are grouped in
matrix E;. Therefore, a new invariance equation is reached
from equation (14),

QT E, = QFATIE, &7 (15)

which may be solved in a total-least-squares (TLS) sense, i.e.,
defining

[E1 E;| =[QTFE, QFATIE,], (l6)

then compute the eigendecomposition of

E{I E E H
El [E; E;] = EAE". (17)

Matrix E is partitioned into

En Ep
E = . 18
[Em Em] (18)

Matrix ®, which represents the rotational invariance, is com-
puted based on an EVD decomposition on ¥ = —E 5, E;,".

3. BEAMSPACE CB-DOA

Consider a schematic modeling for the system represented in
Fig. 4. Received data are projected in different subspaces
by matrices T; and later processed by CB-DoA algorithm.
Consider two correlation matrices R; and R such that
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Fig. 4. General modeling for Beamspace CB-DoA.

R; = QR,Q" = Q[T/AR,A”T; - 631]Q", (19)
R; = QF'R.Q", (20)
where, in equation (19), the estimation of the noise correlation

is extracted from the signal correlation. By performing an
eigendecomposition on R, one gets

R; = UX?U. (21)
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Let U be the eigenvectors of R belonging to the signal sub-
space and X2 their corresponding eigenvalues. One may con-
clude that QT A and U;X; span the same subspace, that
is,

QT/A = U,%,V, (22)

for a full-rank matrix V.
Defining the auxiliary matrix F as

F, =X Ul (23)

and using equations (11) and (14), then an auxiliary matrix
R is determined as

R, = F,QF7 (R, — o3 1)Q"FH
= 3 'UYQFY (R, — o} 1)Q"U, =,
=S 'UAQFI T AATT, Q7 U, X,
=37 'uiQTlA®AYT,Q"U, X, (24)
Hence, from equation (22), one may conclude that
Ry, = VOV (25)

that is, ® may be found by an eigendecomposition (EVD) of
Ro.

4. COMPARISON TO BEAMSPACE ESPRIT

In order to allow the comparison between the Beamspace ES-
PRIT and Beamspace CB-DoA algorithms, the computational
complexity of both methods is investigated in this section.
For that purpose, Table 1 summarizes the basic operations for
each algorithm. When referring to multiple rows or columns,
Matlab notation was used. Recalling that M is the number of
sources, N is the number of sensors, and L is the beamspace
dimension, the number of operations for each algorithm can
be determined. Beamspace algorithm is based on the use of
different sectorization for estimating the DoA angles. Nev-
erthless, as presented in [6], the different beamspace projec-
tions may be performed in parallel, due to its inherent modu-
larization. Therefore, the computational complexity analysis
is performed on only 1 beamspace projection, for both algo-
rithms.

From Table 1, one verifies that the Beamspace ESPRIT
algorithm requires:

e 3 eigendecompositions (1 for a 2M x 2M Hermitian
matrix, 1 for an M x M Hermitian matrix, and 1 for an
L x L Hermitian matrix);

e 1 full-matrix inversion of an M x M matrix;

e 10 matrix multiplications (2 for the product of an L x L
and L x N matrices, 2 for the product of an L x L and
L x N matrices, 1 for the product of a pair of L x L
matrices, and 4 for the product of an M x L and an
L x M matrices).



Table 1. Short descriptions of Beamspace ESPRIT and
Beamspace CB-DoA algorithms.

Beams. ESPRIT
[Us,6%] = EVD(Rx)
E.=QTH U,

E, = QFTHU,

Beams. CB-DoA
[Us,6%] = EVD(QR. Q")

F=Xx;'Uf

R.= R,—6%I

E;

[E,A] = EVD(E.)
Ei2=E(0:M —1,M :end)
E2 = E(M: end, M : end)
¥ = —E2E5;}

[®#] = EVD(¥)

R: = F.QFR.Q"F!

[®"] = EVD(R.1)

On the other hand, the new CB-DoA method requires:

e 2 eigendecompositions (1 for an L x L Hermitian ma-
trix, and 1 for an M x M Hermitian matrix);

o 1 diagonal-matrix inversion of an M x M matrix;

e 8 matrix multiplications (2 for products of pair of L x L
matrices, 1 for a productof an M x M andan M x L
matrices, and 4 for products of an M x L and L x L
matrices and 1 for a productofan M x L andan L x M
matrices);

e | matrix subtraction of a pair of N x N matrices.

Although the computational cost of each method is highly
dependent on implementation issues, it is straightforward to
verify that the proposed algorithm presents smaller complex-
ity than the Beamspace ESPRIT. In fact, the Beamspace CB-
DoA requires fewer matrix multiplications, includes a simpler
(diagonal) matrix inversion, and requires less eigendecompo-
sitions, which is a very computationally intensive operation.
In Table 2, a detailed comparison is provided which shows
the asymptotic complexity of the basic operations, according
to [8].

Table 2. Number of operations required by Beamspace ES-
PRIT and Beamspace CB-DoA.

Operation Compl. [8] | B. ESPRIT | B. CB-DoA
Herm. Eigendec. O(n?) 3 2
Full Inversion 0O(2n°/3) 1 —
Diag. Inversion O(n) - 1
Multiplication O(n?) 10 8
Subtraction O(n?) - 1
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S. COMPARISON TO CB-DOA

A direct comparison between the beamspace and elementspace
versions of CB-DoA algorithms is strongly dependent on two

key factors. First, on the hardware platform in which the algo-

rithms are tested, since any parallel hardware structure repre-

sents an advantage for the Beamspace CB-DoA. Second, on

some previous knowledge about the source locations, since

the processing of some of the sub-bands may be considered

unnecessary.

If one sub-band of Beamspace CB-DoA is compared to
the elementspace CB-DoA, the number of algebraic opera-
tions is larger for the beamspace version, but the operations
are performed for matrices with smaller dimensions. For ex-
ample, Beamspace CB-DoA requires 8 matrix multiplications,
while the elementspace version requires only 3 matrix mul-
tiplications. On the other hand, there is a reduction on the
number of entry operations in each matrix multiplication, due
to the reduced dimensions of the structures, which may com-
pensate the increase in the number of operations, since the
complexity of multiplication is O(n?).

6. SIMULATIONS

Some computer simulations were performed to assess the er-
ror performance of the Beamspace CB-DoA in comparison to
the Beamspace ESPRIT. The metrics used for evaluation was
the mean-squared error, defined as

-1

MSE = 10; — 6,)?, (26)

-

1
I

K2

Il
=]

where I denotes the number of Monte Carlo runs. In our sim-
ulation environment, / = 250. Simulations were run in a
Matlab platform in a personal computer (PC). The transmit-
ted sinusoids presented a time-varying amplitude, in order to
simulate flat channel effects, according to a uniform distribu-
tion.

In the first simulation scenario, 2 transmitting sources and
18 receiving antennas were used in a noiseless environment,
as well as in a scenario with SNR (signal-to-noise ratio) equals
25dB. The angles to be estimated were randomly chosen in
the passband of the beamspace. The MSE was measured as
a function of the number of beams, as shown in Fig. 5. The
main goal of this scenario is to compare how the performance
of both algorithms is affected by the number of beams used.
As can be observed from Fig. 5, the MSE performance is
equivalent for both algorithms in the noiseless and the 25dB
scenarios. For 18 beams, Beamspace CB-DoA is equivalent
to elementspace CB-DoA. Then, one may realize that MSE
performance for Beamspace CB-DoA is inferiorly bounded
both in the noiseless and in the 25 — dB scenarios by the per-
formance of its equivalent elementspace.

The MSE performances of both beamspace algorithms were
also measured as function of the SNR, using 2 transmitting
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Fig. 5. Estimated MSE for Beamspace ESPRIT and

Beamspace CB-DoA algorithms for 2 sources and 18 receiv-
ing antennas, as a function of the number of beams.

antennas, 18 receiving antennas, and 12 beams in the beam-
space. The MSE results are shown in Fig. 6. Once again,
the performance of both algorithms are very similar for the
whole range of SNRs simulated. In the same plot, the theo-
retical CRLB was included in order to assess the performance
of both algorithms. The CRLB was calculated according to
the simplified expression: [2]

2
6oy

CRLB=— N ____
N,(N2 —1)No2’

27)

where Ny = 500 represents the number of samples used in the
simulation, and o2 represents the power of the sources. Such
bound is an approximated underestimation in comparison to
the actual CRLB, which does not cause much impact on the
theoretical analyses, since it represents a bound from below
to the variance of the error.

7. CONCLUSIONS

This article proposed an algorithm for DoA estimation, with
lower computational complexity than the Beamspace ESPRIT
[6]. The MSE performance of the proposed algorithm is simi-
lar to the one for the Beamspace ESPRIT, as confirmed through
Monte Carlo simulations. In comparison to elementspace CB-
DoA, there is a compromise between MSE performance and
computational complexity. Moreover, the computational com-
parison to elementspace CB-DoA is dependent on the dimen-
sions of beamspace transformation.
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Fig. 6. Estimated MSE for Beamspace ESPRIT and

Beamspace CB-DoA algorithms for 2 sources and 18 receiv-
ing antennas, as a function of the SNR, for 12 beams. The
CRLB is also included.
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