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Abstract—This paper revisits the waveform paradigm for cod-
ing speech signals, using a multiscale recurrent-pattern matching
approach. The so-called MMP (Multidimensional Multiscale
Parser) algorithm uses a dictionary which is constantly updated
with expansions, contractions, and concatenations of previously
encoded segments. This provides a learning ability to the MMP,
particularly suited for coding voiced and silent segments of
speech. Additional features (nonuniform and auxiliary displace-
ment dictionaries) are considered in order to adjust the MMP
learning mechanism for the speech coding problem. Current
MMP algorithm achieves a fair-to-good objective score when
operating at 8 kbps, as indicated by several speech-coding
experiments. This indicates that it may be worthy to further
investigate the use of the multiscale recurrent pattern matching
paradigm for speech coding.

I. INTRODUCTION

Most speech coders/decoders (codecs) in use today are
based on the CELP (code-excited linear prediction) tech-
nique [1]. Such approach employs a linear prediction model
for the human speech system, which processes an input
signal determined by the analysis-by-synthesis (AbS) scheme.
Current CELP-based standards [2] yield toll-quality coding
at a rate of about 4–10 kbps, a performance that cannot
be matched by waveform codecs [3] [4]. The present paper
deviates from this paradigm by performing waveform speech
coding using the recently developed Multidimensional Mul-
tiscale Parser (MMP) approach [5] [6], based on multiscale
recurrent pattern matching. The MMP is a multidimensional
compression algorithm, that has achieved state-of-the-art result
for a wide class of signals, including one-dimensional signals,
as electrocardiograms (ECG) [7], two dimensional signals such
as plain images [8], [10], stereoscopic images [11] and even
three-dimensional signals [12]. The MMP algorithm encodes
segments of a signal using a dictionary formed by expan-
sions, contractions, and concatenations of previously encoded
segments. Therefore, the MMP dictionary inherently learns
the patterns present in the signal, which lends it a universal
flavor. The signal is segmented and encoded according to
a rate-distortion criterion. Although the MMP constitutes a
waveform, time-domain codec, some criteria related to both
human perception and to how human speech is produced can
be incorporated in the processes of dictionary learning and
segment encoding.

In this paper we analyze the coding of speech signals
using an MMP-based approach. We consider a perceptually
optimized encoder in the time domain, using μ-law ampli-
tude quantization, and a displacement dictionary containing

recently coded samples, which improve the coding procedure
along regular portions of the speech such as voiced or silent
segments. With these features, we have achieved an objective
score, as determined by ITU-T Rec. P.862 PESQ (perceptual
evaluation of speech quality) [9], in the range of 3.53@8
kilobits per second (kbps). This paper is organized as follows:
Section II introduces the main concepts behind the MMP
paradigm and Section III considers the adjustments required
by the MMP approach for coding speech signals. Section IV
presents several experiments illustrating the MMP quality ×
rate performance for a set of practical speech signals, whereas
Section V closes the paper emphasizing its main contributions.

II. THE MMP ALGORITHM

The MMP represents segments of the signal to be en-
coded using approximations obtained from previously encoded
segments [5], [6]. This way, in the MMP algorithm there
is a process of learning the patterns present in the input
signal, justifying the term “recurrent patterns”. In addition,
the segment matching is performed in different dimensions,
considering expanded and contracted versions of the recurrent
patterns. It achieves this by encoding the signal using multiple
dictionaries, one for each scale. Each dictionary is updated
with concatenations of dictionary words used for encoding
previous segments of the signal, expanded or contracted to
match each the scale of each dictionary.

In the context of speech coding, the MMP algorithm starts
by dividing the one-dimensional input signal into size-N
blocks. In this work, we consider N = 128.

Suppose we have the set of S dictionaries
{D(0),D(1), . . . ,D(S−1)}. The elements of the scale-s
dictionary D(s) have dimension 2s. This implies that the
block size N is equal to 2S−1.

In order to be encoded, each input signal block is segmented
according to a segmentation tree such as the one illustrated in
Fig. 1. If a tree leaf corresponds to a segment of dimensions
2s, it is encoded using a vector v

(s)
k from dictionary D(s). In

this example, the block is encoded using the symbol sequence
0, 0, 1, i3, 1, i4, 1, i2, where the bits 0 and 1 represent the
partition or not, respectively, of a segment. The integers ik
are the indexes, in the dictionary of scale s, of the vector v

(s)
k

used to approximate the scale s segment Xik
. In this case,

if the scale of X0 is S = 8 ( corresponding to a block size
equal to N = 2(8−1) = 128), then the input segment has
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been approximated as [ ̂Xi3
̂Xi4

̂Xi2 ] by the concatenation of
the codewords v

(5)
i3

, v
(5)
i4

, and v
(6)
i2

.
The MMP code for the segment is obtained by encoding the

generated stream of symbols using a context-based adaptive
arithmetic coder [13], [5]. We have different encoding contexts
depending on the scale (depth level of the tree) for both flags
and vector indexes. In addition, following the approach in [8],
[10], the encoding of vector indexes is further conditioned by
the original scale of a vector when the dictionary was updated
with an expanded or contracted version of it.
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Fig. 1. (a) Example of the segmentation tree of a speech block; (b) Compact
representation of the segmentation tree in (a).

After encoding, the dictionaries are updated. The procedure
can be best understood by referring to Figs. 1a and 1b. As seen
above, the segments corresponding to nodes n3 and n4 are ap-
proximated as ̂X3 = v

(5)
i3

and ̂X4 = v
(5)
i4

, respectively. In this
case, each dictionary D(s) is updated using the approximation
corresponding to their parent node n1 ( ̂X1 in the figure), that
is the concatenation of ̂X3 and ̂X4. Since they have scale
5, that is, length 25 = 32, then their concatenation ̂X1 has
length 64, and thus a scale transformation must be carried
out to transform ̂X1 to the scale s and include it in D(s).
For example, in order to update dictionary D(4), this length-
64 vector must be contracted to length 24 = 16. The scale
transformation is a simple sampling rate change operation,
and details on it can be found in [5] and [8]. In addition, all
the concatenations of tree nodes with the same parent node
are recursively included in the dictionaries. Again referring
to Figs. 1a and 1b, the dictionaries are also updated with
̂X0, that is the concatenation of ̂X1 and ̂X2. However, before

updating a dictionary, it is checked if there is a dictionary
word too close to the one being introduced; if this is the case,
the dictionary is not updated [10].

It is important to note that, since the dictionaries are updated
based on the reconstructed versions of the segments, then the
decoder can perform exactly the same dictionary updating
operations as the encoder, and therefore the dictionary can
be adapted without the transmission of any side information.

The initial dictionaries are usually very simple. We start
from dictionary D(0), that is composed of just scalars (di-
mension 20 = 1). One way to initialize it is with all the
sample amplitudes the signal may have. For example, if the
dynamic range of the signal is from Amin to Amax, then D(0)

will be the set {Amin, Amin +1, Amin+2, . . . , Amax}. The initial
dictionaries for the other scales are derived from D(0) by scale
transformations.

The segmentation tree is obtained using Lagrangean rate-
distortion optimization [6], [14]. We minimize, for each node
nl, the Lagrangean cost J(nl) defined by

J(nl) = D(nl) + λR(nl), (1)

where:
• D(nl) is the l2 (squared) distortion between segment Xi

corresponding to node nl and its approximation using the
dictionary of the corresponding scale;

• R(nl) is the rate spent to encode the index il of the vector
used to approximate the segment associated to node nl,
together with the cost to represent the flags associated
with node nl;

• λ is a factor that weights the relative importance of rate
and distortion in the optimization process.

In this process we compute both the cost associated to node
nl and the costs associated with its descendants n2l+1 and
n2l+2. If J(nl) > J(2nl+1)+J(2nl+2) the nodes n2l+1 and
n2l+2 are kept and we make J(nl) = J(2nl +1)+J(2nl+2).
Otherwise, the nodes n2l+1 and n2l+2 are pruned. Starting
from the full tree, this process is recursively repeated from
bottom up; when node n0 is reached, the final segmentation
tree is obtained.

For more details on the MMP algorithm, the reader is
encouraged to consult the references [5], [6], [8], [10], [15].

III. MMP-BASED SPEECH CODING

In the field of speech coding, the MMP approach would
be classified as a waveform codec, since originally it operates
exclusively in the time domain [16]. The MMP efficiency
is highly based on its learning ability along the dictionary
updating process. In practice, however, this learning process
can easily incorporate temporal, spectral, and even perceptual
characteristics of any given process, such as speech, in our
particular case. By doing so, the MMP algorithm ends up
modeling the process in a nonparametric manner through its
dictionary content.

A simple time-domain analysis of speech signals indicates
that coding errors in large-amplitude samples are less per-
ceptive than in small-amplitude intervals. For that matter, a
nonuniform quantizer, following the log-like μ law [16] is em-
ployed by waveform encoders, such as the ITU-T G.711 [3],
enforcing the same signal-to-quantization-noise ratio (SNR) on
the entire dynamic range of the speech signal. This procedure
can be incorporated into the MMP algorithm by quantizing
its dictionary according to the same rule. This operation
must be applied to the initial dictionary as well as in the
updating stage, providing a time-domain perceptual feature
to the MMP learning process. As a positive side-effect, this
procedure also limits the dictionary growth, simplifying the
subsequent dictionary searches and, consequently, the entire
coding procedure.
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A speech signal may present two levels of statistical
correlation: (i) short-time correlation between consecutive
samples and (ii) long-time correlation in voiced segments,
that characterizes the pitch-generation process. In these voiced
segments, a quasi-periodic behavior arises (see Fig. 2a), which
can be easily encoded with the MMP scheme with the aid
of an auxiliary displacement dictionary containing the most
recently coded signal samples. If a good approximation in
this displacement dictionary is found, a flag is sent to the
decoder together with the delay index indicating the best
segment position in this auxiliary displacement dictionary.
Note that this delay index varies in one-sample intervals. With
this strategy, the search procedure is greatly simplified, since
just a limited set of segments are compared to the current
speech signal, and the coding rate is reduced accordingly. In
unvoiced intervals, as illustrated in Fig. 2b, signal tends to be
quite irregular in time domain, but some regularity can still be
found in the spectral or statistical domains.
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Fig. 2. Basic examples of speech segments: (a) voiced; (b) unvoiced.

IV. EXPERIMENTAL RESULTS

In this section, we investigate the MMP rate-distortion
performance when coding speech signals. In all experiments
shown here, we consider database DB1 consisting of 10
sentences, phonetically balanced to the Brazilian Portuguese
language [17], sampled at 8 kHz and with a 16-bit precision.
Resulting quality of the MMP codec is assessed objectively
using ITU-T PESQ measure [9] mapped onto the mean opinion
score (MOS) 1–5 scale.
Experiment 1: In a first experiment, we investigate how the
μ-law quantization on the MMP dictionary influences the
algorithm performance when coding database DB1. Fig. 3
shows the PESQ-MOS results when using the MMP algorithm
with uniform or μ-law dictionaries. From this figure, we
observe how the nonuniform dictionaries greatly improve the
MMP rate-distortion trade-off as compared to the uniform

dictionary. As mentioned above, computational complexity is
greatly reduced by the nonuniform dictionaries, since each
of the different scales dictionaries are initialized with 257
elements (256 levels plus the null amplitude). On the other
hand, the uniform dictionaries for each scale start with 4096
elements. As far as the dictionary growth is concerned, for
the 8-kbps rate, the uniform dictionary increases to around
85000 elements, after encoding each sentence whereas its
nonuniform counterpart grows only to 53000, indicating that
the nonuniform search is more effective throughout both
learning processes.
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Fig. 3. PESQ-MOS results for the MMP algorithm, with coding rate around
8 kbps, with uniform (dashed line) and nonuniform (solid line) dictionaries,
in comparison to G.729 results.

Experiment 2: Fig. 4 shows the results of the MMP al-
gorithm incorporating the auxiliary displacement dictionary,
for different values of its length L. It is verified how this
feature improves the overall MMP performance, particularly
for L = 1024, which achieves the best quality × rate
compromise in the 8-kbps range.

7.4 7.6 7.8 8 8.2 8.4
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

CS−ACELP

M
O

S

Rate (kbps)
 

 

MMP mu−law

MMP mu−law 512

MMP mu−law 1024

MMP mu−law 2048

Fig. 4. PESQ-MOS results for µ-law MMP algorithm, with coding rate
around 8 kbps, for different lengths L of the displacement dictionary, in
comparison to G.729 results.

The activation process of the auxiliary displacement dictio-
nary in the MMP coding procedure is illustrated in Fig. 5.
The clear areas in the lower plot of this figure indicate
how the auxiliary displacement dictionary is more commonly
employed in the speech segments that match previously coded
samples. In this way, a highly regular signal results in larger
segments being matched by the displacement dictionary, thus
reducing the resulting coding rate.
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Fig. 5. Use of displacement dictionary along time in MMP coding for a
given speech signal.

For the entire database DB1, the original multiscale dic-
tionaries got activated in 70% of all segments, while the
auxiliary displacement dictionary got activated in 30% of
them, reducing the overall coding rate accordingly.

Fig. 6 presents the statistical distribution of the encoded
segment length for the same database. From it, one concludes
that all segmentation levels are used with equivalent frequen-
cies, thus reforcing the usefulness of the multiscale nature of
the dictionaries in speech coding.
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Fig. 6. Statistics of segment size in MMP coding for speech database DB1.

Experiment 3: The overall performance of the MMP algo-
rithm for different coding rates of database DB1 is depicted
in Fig. 7. For the sake of comparison, results are also shown
for the ITU-T G.711 (PCM) [3], ITU-T G.726 (ADPCM) [4]
and ITU-T G.729 (CS-ACELP) [2] speech codecs. The MMP
version with non-uniform initial dictionary (solid line) approx-
imates the G.729 performance. Note that the version with
initial 12 bits uniform dictinary achieves a signal to noise
ration slightly above the one of PCM, but at a higher rate.

V. CONCLUSION

We investigate the performance of the multiscale recurrent
pattern matching (MMP) approach for encoding speech sig-
nals. Two features (nonuniform and auxiliary displacement
dictionaries) were incorporated to the standard MMP method,
increasing its efficiency in terms of quality and rate for the
particular problem at hand. With such improvements, current
MMP codec achieves a PESQ-MOS result of 3.53 when oper-
ating at 8 kbps. Additional features, such as voiced/unvoiced
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Fig. 7. PESQ-MOS × coding rate for the MMP algorithm.

segment classification and perceptual (PESQ-like) segmental
search, can be easily incorporated into the MMP algorithm,
indicating that this research line may be worth pursuing as a
viable alternative for modern codecs.
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