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Abstract—This paper investigates the performance of
the multidimensional multiscale parser (MMP) algorithm
for speech coding. A new prediction-based scheme is
considered, where the MMP algorithm operates on the
associated prediction-error signal instead of the original
speech signal. Other features are considered, such as:
nonuniform quantization of MMP initial dictionary, use
of auxiliary dictionary of recent past samples, and quanti-
zation/normalization during the dictionary updating stage.
It is verified that the resulting MMP scheme, combining all
these techniques, at 8 kbps can achieve perceptual objective
scores comparable to the ITU-T G.729 codec.

I. INTRODUCTION

Current speech coders achieving the best compromise
of voice quality and compression rate are based on
the code-excited linear prediction (CELP) approach [1].
These coders employ the analysis-by-syntheses (AbS)
procedure to determine the input signal to a linear predic-
tion model of the human vocal tract. CELP-based speech
coders, such as ITU-T G.729 recommendation [2], yield
top-notch voice quality at coding rates around 4—10 kbps,
whereas standard waveform coders, such as the ITU-T
G.711 [3] or G.726 [4] recommendations, operate at 64
and 32 kbps, respectively.

The so-called multidimensional multiscale parser
(MMP) [5] [6] uses past portions of the signal to perform
the encoding process. These past segments, after proper
encoding, are scaled to distinct lengths and incorporated
into a dictionary, thus providing a learning ability to the
overall MMP scheme. The MMP has been successfully
applied to the coding of, for instance, electrocardio-
gram signals [7], stereoscopic images [8], and three-
dimensional images [9]. Since the MMP algorithm
operates exclusively in the time or space domains, it can
be seen as a waveform codec [10].

Initial application of the MMP algorithm in speech
coding, as presented in [11], have motivated further
investigation of its coding performance in this new

context, by incorporating additional features to its learn-
ing process. In particular, in this paper we assess the
MMP performance when operating on the residue signal
yielded by the linear prediction of the speech signal
under analysis, whereas reference [11] considers the
MMP direct coding of the speech signal. It is verified
that the residue signal presents a higher regularity than
the original speech signal, which better suits the MMP
learning process. This increases, for a given coding rate,
the perceptual quality of the MMP reconstructed signal,
as quantified by the ITU-T P.862 PESQ (perceptual
evaluation of speech quality) [12] recommendation.

In order to evaluate the performance of the MMP
algorithm in coding the prediction error of a given speech
signal, this paper is organized as follows: Section II
presents the concepts associated to the linear prediction
concept of speech signals; Section III introduces the
prediction-based MMP algorithm with additional fea-
tures considered in this work, namely: non-uniform ini-
tial dictionary, auxiliary displacement dictionary, updat-
ing procedure using quantized and/or normalized signal
segments; Section IV presents the experimental results
for these different MMP versions. The results for the
8-kbps coding rate allow a direct comparison to the
G.729 performance. It is verified that at this coding rate
the prediction-based MMP algorithm achieves a PESQ
score, after a proper mapping onto the mean-opinion
score (MOS) scale, of 3.69, which is quite close to the
G.729 score of 3.84 for the same database.

II. LINEAR PREDICTION

Linear prediction (LP) is a modeling approach which
estimates the current sample value of a signal s(n) using
a linear combination of NV of its past samples, that is

N
$(n) = Z a;s(n —1), (1)
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where N is the predictor order and the a;, for i =
1,2,..., N are the so-called LP coefficients. Using such
an estimate, we can determine the prediction error be-
tween the true and estimated values as

e(n) = s(n) — §(n). ()

Taking to the z-transform domain, using the Z{-} oper-
ator, Egs. (1) and (2) correspond to:
Z{s(n)} = H(z)Z{e(n)}, 3)

with

H(z) = !
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This equation indicates that the LP procedure models the
{s} process as the output of an autoregressive system
H(z) to the estimation error {e}. If the process {s} is
stationary, it can be shown that the coefficients a, which
minimize the mean squared error E[e?(n)], are given by
the system of linear equations [10]
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where Rs(v) = Els(n)s(n —v)], for v = 0,1,..., N.
When a limited amount of data is available and computa-
tional complexity is a factor, there are several algorithms
for estimating R,(v) and solving Eq. (5) [10].

ITI. PREDICTION-BASED MMP SPEECH CODING

In practice, a speech signal can be considered station-
ary within intervals of 10-30 ms [10], which correspond
to sets of 80-240 samples at an 8-kHz sampling rate. For
the prediction-based MMP algorithm, the speech signal
is segmented into intervals of 128 samples.

Suppose a previous interval [s;_1(n)]q have already
been coded. After a proper estimation of the autocorre-
lation function R,(v) for that interval, the corresponding
LP model Hy_1(z), as given in Eq. (4), is determined
through Eq. (5). Using a naive but somewhat effective
approach, the following (kth) interval of 128 speech
estimates [$x(n)]| can be determined by Eq. (1) using the
LP coefficients from Hy_1(z). Hence, from Eq. (2), we
can calculate the corresponding 128 samples of residual
error [e(n)], which are subsequently coded by the MMP
algorithm, as explained below, yielding [e;(n)]q. The
result for the current speech interval is then given by

[se(n)]lq = [3x(n)] + [ex(n)]q, (6)

which, following the same procedure, allows one to code
the next speech interval and so on. By using this scheme,
the MMP may take advantage of the more well-behaved
statistical characteristics of the error signal e(n) when

compared to the original speech signal s(n) [13]. Note
that in this scheme there is no need to transmit the
prediction coefficients to the decoder, since they can be
inferred from the previously coded block, that is already
known to the decoder.

The MMP algorithm represents segments of the signal
to be encoded, in this case the prediction error, using
a segment-matching procedure performed in different
scales and based on previously encoded segments. In
this way, the MMP algorithm is capable of learning
the patterns present in the input signal. It achieves this
by using one dictionary for each scale, where each
dictionary is updated with concatenations of words used
for encoding previous segments, expanded or contracted
to match the given scale. The entire MMP operation can
be broken down into the three stages discussed below.

A. Dictionary initialization

The initial MMP dictionary determines the algorithm’s
ability to match the input signal not only during the ini-
tial coding stages, but also throughout the entire coding
process. This dictionary is characterized by its size L,
in each signal scale, and the uniform/nonuniform dis-
tribution of its elements. An effective dictionary should
be large enough to include interesting patterns for the
matching procedure, thus increasing the quality of the
encoded signal, and small enough to avoid unnecessary
patterns, thus reducing the size of the resulting bitstream.

In this work, the MMP initial dictionary consists of
constant vectors of 8 different scales: 1 x 1, 1x2,1x4,
1x8,1x16,1x32,1x64 e 1x128. In each scale, we use
256 vectors, where the sample distribution among these
vectors is investigated in Experiment 3 later presented.

B. Segment matching

In the MMP algorithm, each input-signal block is
segmented according to a segmentation tree described by
a sequence of Os and 1s, associated to the partition or
not, respectively, of a segment. Each bit 1, denoting that
the segment is not partitioned, is related to a dictionary
index ¢ of the vector that best matches the segment,
within the dictionary associated to the segment scale.
The MMP code for the entire signal is obtained by
encoding the generated stream of symbols (including the
segmentation-tree description and the associated dictio-
nary indexes for each 128-sample block) using a context-
based adaptive arithmetic coder [14].

C. Dictionary update

After encoding, the scale dictionaries are updated.
Segments that form the entire block are concatenated and
included in the corresponding dictionary. If necessary,
segments are scaled (decimated or interpolated) follow-
ing standard sampling-rate change operations. Before
updating a dictionary, however, we first check if there is a



dictionary word too similar to the one being introduced;
if this is the case, the dictionary is not updated [15]. It
is important to mention that the decoder can perform
exactly the same dictionary updating as the encoder,
since this updating procedure is entirely based on the
reconstructed versions of the segments, thus indicating
that all dictionaries can be adapted without the transmis-
sion of any side information.

D. Computational complexity

The MMP computational burden is mainly associated
to the pattern-matching stage, which is highly dependent
to the actual dictionary size. Larger dictionaries yield
better pattern matchings but also lead to higher coding
rates and more cumbersome coding processes. In this
work, focus is given to the best quality-rate compromise,
at the possible expense of higher computational cost.

IV. EXPERIMENTAL RESULTS

In this section, we investigate the rate-distortion per-
formance for the prediction-based MMP algorithm when
coding speech signals. In all experiments shown here, we
consider a simplified database consisting of 10 sentences,
phonetically balanced to the Brazilian Portuguese lan-
guage [16], sampled at 8 kHz and with a 16-bit precision.
The objective quality of all codecs is assessed with the
PESQ recommendation mapped onto the MOS 1-5 scale.

For the sake of comparison, Figure 1 depicts the
rate-distortion results for the standard MMP, operating
directly on the speech signals, as presented in [11]. From
this plot, it is verified that the standard MMP reached a
score of 3.53 around the 8-kbps coding rate, whereas the
G.729 codec yields a 3.85 score.
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Fig. 1. Rate-distortion performance of several ITU-T codecs and

standard MMP algorithm with uniform (dashed line) and nonuniform
p-law (solid line) dictionary.

Several configurations of the prediction-based MMP
algorithm are assessed around the 8 kbps rate in the
experiments that follow.

Experiment 1: In this first experiment, the MMP initial
dictionary was designed using the nonuniform quantiza-
tion dictated by the p law. The MMP performance was
verified for several values of the LP model order. From
the results shown in Figure 2, a prediction window of
N = 32, which corresponds to a PESQ-MOS of 3.57,
was chosen for all subsequent analyses.
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Fig. 2. Experiment 1: PESQ-MOS results around 8 kbps for the

prediction-based MMP algorithm with different LP orders N.

Experiment 2: In this experiment, an auxiliary dictio-
nary containing previous L encoded samples is incorpo-
rated to the MMP algorithm. This additional dictionary
works as a short-time special memory which serves well
the matching procedure for (quasi-)periodic signals such
as voiced speech segments. Figure 3 depicts the MMP
performance when using this auxiliary dictionary with
different lengths L. From this figure, we observe that
L = 128 yields the best PESQ-MOS results of 3.62 in
the coding range of interest.
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Fig. 3. Experiment 2: PESQ-MOS results around 8 kbps for the

prediction-based MMP algorithm for different shifts L of displace-
ment dictionary.

Experiment 3: In this analysis, we consider different
quantizations, as opposed to the p-law or uniform ones,



for the MMP initial dictionary and the corresponding
updating procedure. For this purpose, a histogram for
the prediction error was determined for a larger database
comprising 37 sentences (including 10 sentences in
Brazilian Portuguese, 7 in Chinese, 7 in French, 6 in
Indian, and 7 in UK English) with an average 5-second
duration, as seen in Figure 4.
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Fig. 4. Histogram of prediction error signal for large database.

The envelope of the error histogram, shown as the
dashed line in Figure 5, can be modeled by a generalized
Gaussian distribution characterized by [15]
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and I'(.) is the gamma function. In this model, o defines
the distribution decaying rate and (3 the corresponding
standard deviation. For our prediction error data, these
parameters were given by o = 0.43 and § = 1.1031 X
103, yielding the solid line in Figure 5.

A nonuniform initial dictionary was designed for
the generalized Gaussian model using the 1loyd2
MATLAB command. Different dictionaries of sizes 256
(compatible to the p-law quantizer) and 512 were de-
signed. In addition, we also considered enforcing or
not signal quantization during the dictionary updating
stage. Results for these MMP versions are summarized
in Figure 6 and indicate a best performance for the 256-
size nonuniform dictionary incorporating a quantization
stage during its updating procedure.

Experiment 4: Studies conducted in [17] [18] describe
the geometric location of the blocks of a residue dic-
tionary whose elements follow a generalized Gaussian
distribution. It is shown that these blocks form a multi-
dimensional shell of points with constant £ norm, for a

-3

5x 10 ‘
4.5¢ .
.
al .
3.5r
3l
2.5r
ol
1.5F
1r
0.5F
0 -4000 -2000 6 2000 4000

Fig. 5. Modeling the envelope of the prediction error histogram
(dashed line) using the generalized Gaussian distribution (solid line)
with & = 0.43 and 3 = 1.1031 x 10°.
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Fig. 6. Experiment 3: PESQ-MOS results around 8 kbps for the
prediction-based MMP algorithm with different dictionary strategies.

particular value of . Results presented in [13] verified
the effectiveness of the MMP algorithm when using
some norm equalization during the dictionary updating
procedure. Following this trend, this experiment consid-
ers different values of v in the normalization process for
the MMP algorithm, as shown in Figure 7. From these
results, one observes that forcing a constant L' norm
improves the PESQ-MOS results for the prediction-based
MMP algorithm to 3.69, which is quite close to the 3.84
score achieved by the G.729 encoder.

Experiment 5: Up to this point we focused our anal-
yses to the coding-rate region around 8 kbps, which
allows a direct comparison to the G.729 performance.
Figure 8 shows the performances of both MMP versions
(standard [11] and prediction-based) for a wider rate
range, along with the results for the G.711 (PCM), G.726
(ADPCM), and G.729 (CS-ACELP) codecs. Note that
the newly proposed prediction-based MMP (solid line)
consistently outperforms its standard version up to the
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Fig. 7. Experiment 4: PESQ-MOS results around 8 kbps for the

prediction-based MMP algorithm using different norm values for the
dictionary updating stage

20-kbps value, where it reaches a very high 4.4 PESQ-
MOS level, approaches the G.729 performance at 8 kbps
and easily surpasses the ITU-T waveform codecs.
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Fig. 8. Experiment 5: PESQ-MOS results for several coding rates

for standard (dashed line) and prediction-based (solid line) MMP
versions. For rates around 32 and 64 kbps the prediction-based MMP
used initial dictionaries with 1024 and 4096 elements, respectively.

V. CONCLUSION

It was observed that the MMP paradigm can benefit
from the linear prediction model of speech signals, by
encoding the associated prediction-error signal instead
of the original speech signal. A few other improvements
were also considered, including the use of a nonuniform
quantization for the initial dictionary and its updating
procedure, and a learning procedure that preserves the
segment norm across scales. It was verified that around
8 kbps all these features together raised the objective
score for the prediction-based MMP algorithm to 3.69,

which is quite comparable to the 3.84 score yielded by
the G.729 codec operating at the same coding rate.
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