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Abstract—We propose an automatic engine for panoramic-take
detection which relies on an algorithm based on phase correlation
and boosting. The motion between two sequential video frames is
first estimated through a phase correlation. Then, we are able to
extract motion parameters and apply post-processing operations
on these parameters in order to feed an AdaBoost-based classifier.
The proposed algorithm has been validated over 5 segments of
videos of 10000 frames each. Panoramic frame detection achieved
around 85% recall and 76% accuracy on a validation set of videos
not belonging to the training set.

I. I NTRODUCTION

The amount of sports-related multimedia has increased
substantially over the years, due to the fact that advances in
technology have made it easier to capture, store and retrieve
videos. The audience’s interest in sports-related content, espe-
cially soccer, has grown in a similar manner. Together, these
trends point to the necessity of the development of efficientand
effective tools to reduce viewers’ efforts in searching forwhat
interests them. This led to an increase in the interest in the
video summarization and retrieval research area has received
more and more investments.

This paper presents an algorithm that is able to detect when
a panoramic image occurs during a soccer match. This kind of
detection is useful as during a soccer match TV production,
teams employ several types of camera takes. For example, at
a moment of potentially decisive action the camera take is
usually panoramic, but after the moment passes the camera
switches to a non-panoramic mode, such as a close-up or an
audience take. Figure 1 presents some examples of panoramic
and non-panoramic takes.

Fig. 1: Snapshots of panoramic, close up and audience takes.

According to [1], soccer is classified as an MVS (Multiple
View Semantics) sport since a single camera position is not
able to capture the entire action, on the other hand DSV

(Dominant Semantic View) sports, such as tennis, only need
one position to do the task.

Among several methods of estimating the camera motion,
[2] presents a technique that assumes that the camera motion
can be defined by a 2D affine model. However, it is based on an
adaptive IRLS (Iterative Reweighted Least Squares) algorithm,
which is known to be a computationally expensive algorithm.

An alternative is to estimate the motion through phase
correlation described by [3]. It uses only FFTs and frequency-
domain multiplications operations, which are much simpler
and more efficient than those proposed by [2]. The outputs of
the motion are post-processed an fed to an AdaBoost classifier.

This paper is organized as follows: This section outlines the
proposed system as well as the video database used during
system calibration. Section II discusses how to extract camera
motion features and post-process them to obtain useful data.
Section III presents the boosting training stage to combineall
features extracted as well as to give them weights in order
to optimize the error rate. Section IV shows the experimental
results taken on a different set of videos from those used in
training. Finally Section V draws conclusions and discusses
future work.

A. System Overview

The system inputs the soccer match video and outputs labels
for each video frame indicating whether it is a panoramic take
or not. Figure 2 shows the flowchart of the proposed system
which can be separated into two stages: data preparation and
classification.

B. Database

Table I shows the video segments that have been used
during development, training and validation. They are 2009
Confederations Cup matches held in South Africa. All of them
are NTSC standard videos, which implies in a frame rate of
29.97 frames per second and a dimension of 720 columns per
486 lines. Video 1 was used during the technique development
in order to do signal and post-processing analysis. Segments
2, 4, 6, 8 and 10 were used during the training stage and 3,
5, 7, 9 and 11 during validation. Notice that although training
and validation segments are from the same matches, they are



Fig. 2: Conceptual block diagram of the proposed panoramic
detection.

from different parts of the video, and therefore able to provide
a reliable validation.

TABLE I: Set of videos used during the technique develop-
ment, training and validation.

Label Match Duration

Segment 1 Brazil x United States 1000 frames

Segment 2 Brazil x Egypt 10000 frames

Segment 3 Brazil x Egypt 10000 frames

Segment 4 Brazil x United States 10000 frames

Segment 5 Brazil x United States 10000 frames

Segment 6 Brazil x Italy 10000 frames

Segment 7 Brazil x Italy 10000 frames

Segment 8 Brazil x South Africa 10000 frames

Segment 9 Brazil x South Africa 10000 frames

Segment 10 Spain x United States 10000 frames

Segment 11 Spain x United States 10000 frames

II. CAMERA MOTION ESTIMATION

Two sequential panoramic frames tend to have few differ-
ences once all objects displayed on screen are small. However,
in scenes of close-up and audience, the objects are large,
tending to present quite noticeable movements. This points
to the possibility of detecting a panoramic frame based on
motion.

A. Phase Correlation

According to [3] is possible to analyze the motion between
two sequential frames through Equation (1) whereC(x, y) is
the 3D correlation map that shows the dominant motion. It
means that the dominant motion will appear as a peak on
a map position, wherex and y represent the horizontal and
vertical displacements, respectively.
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whereF1 andF2 are the Fourier transforms of the adjacent
frames andF−1 is the inverse Fourier transform [4].

The map origin is on position (0, 0) which means that a
right- and bottom-direction motion causes a peak close to the
origin. However, using DFTs, a left- and top-direction motion
causes a peak close to the edges of the map due to spectrum
repetitions. For an easy understanding and handling of map
data, adjustments on 3D correlation map have been done which
consisted on inversion of quadrants of the map to thereby place
the origin of the map (0, 0) always at the center as shown in
Figure 3.

Fig. 3: 3D map derived from phase correlation.

B. Motion Features Extraction

Once the 3D map is adjusted, the next step is to extract
information to measure the motion between two frames. At
first, we conjectured that using the horizontal and vertical
distance from the peak to the center of the map would provide
the best performance.

However, by performing a rectangular to polar transforma-
tion, as indicated by Equations (2) and (3) below, we will get
more meaningful information.

∆ =
√

x2 + y2 (2)

θ = arctan
(y

x

)

(3)

This is so because the magnitude of the vector drawn from
the origin to the peak, named as∆, will be described as the
size of the motion, while the angle of this vector related to a



reference, named asθ, will be described as the direction of
the motion. Moreover, the magnitude of the peak of the 3D
correlation map, named asρ, can determine how well-defined
that motion is.

So, in order to analyze the behaviour of∆, θ, ρ and
any other features derived from them by post-processing
operations, we have employed Segment 1 described in Section
I-B. Figure 4 shows how∆, θ andρ evolve with time. There, it
is possible to notice the segment divided into four parts. Parts
marked as 1 and 3 are composed of non-panoramic frames
and the ones marked as 2 and 4 are composed of panoramic
frames.
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Fig. 4: ∆, θ andρ timelines.

In Figure 4 it is noticeable that on non-panoramic parts∆
andθ signals vary with a frequency considerably higher than
in panoramic parts. This can be explained by the fact that in
closes-up and audiences scenes, for example, the objects are
larger and move in larger displacements and more directions
than in a panoramic take which implies in a large chance of
the previous frame to be very different from the present.

Moreover, is also noticeable that on non-panoramic casesρ

presents smaller values than in panoramic cases. The reason
is that non-panoramic parts tend to have more and larger
movements, and it is not possible to determine a well-defined
motion peak in the 3D correlation map.

C. Post-Processing Features

The previous section showed features containing interesting
information to the detection of panoramic images. However,a
close analysis shows that theρ signal is the only one that can
be used as it is. The other two (∆ andθ) need post-processing
before can be input to a classifier.

In the analysis performed above, it was possible to notice
that panoramic parts present stable∆ and θ signals. One
way to explore such stability is to apply a variance-based
operation. However, to do that, we should define a window
where the statistics of the signals will be calculated. So, we use

a rectangular window of lengthN moving sample by sample
through the signal calculating the variance inside each window.
The lengthN of the window is determined experimentally.
For an NTSC video standard (29.97 frames per second) we
have adopted the valueN = 15 because it is unlikely to find
out a transition between two different camera takes inside this
period. Even if a transition occurs, post-processed signals will
not be affected considerably once the past samples will only
be used for the variance calculation during half a second. In
addition,N can not be much smaller because this would allow,
for example, a large difference in variance values for close
frames inside the same panoramic view.

Even after post-processing operations, there are parts of
the signal where there may occur confusions determining if
it is panoramic or not. In order to alleviate this problem,
we resorted to an AdaBoost classifier, described in the next
section.

III. A DABOOSTCLASSIFIER

In spite of the fact that in Section II we managed to extract
useful features for the panoramic detection task, considered
individually these features are not sufficient to reliably classify
a take as panoramic or not. Then, they should be considered
jointly in order to provide good classification performance.

Among several classification methods we opted to employ
Boosting, especially Adaptive Boosting [5], which is widely
used. The main idea is that is possible to build a strong
classifier from a set of weak classifiers, as described in [6].

There are several AdaBoost-type classifiers, such as Real
[7], Gentle [8] and Modest [9] AdaBoost. All of them have
been investigated in our work. We used the implementation in
the GML AdaBoost Matlab Toolbox available at [10].

During the training stage and analysis, Segments 2, 4, 6, 8
and 10 were used for training while Segment 1 was used for
testing during development.

A. Input Data & Training Stage

The first idea is to feed the AdaBoost classifier with the data
extracted in Section II, that isρ, variance of∆ and variance
of θ. Figure 5 shows an error rate around 27% for the simple
AdaBoost features configuration. The AdaBoost classifiers in
the GML toolbox have two main settings, they are the tree
depth, that will be set to 3 for this technique, and number of
iterations, which means the number of times that AdaBoost
learners and weights will be adjusted.

However, AdaBoost classifier itself has no memory in its
structure. Therefore, since the evolution of the classification
across frames also matters, this implies that we should create a
mechanism to also input to the AdaBoost classifier a temporal
neighborhood of a frame as well.

Since AdaBoost allows as many features as desired, we
solve this problem by also inputing to it features from neigh-
boring frames. Figure 6 shows the error rate for features drawn
from a window of 0 (no memory at all) up to 100 neighboring
frames. The Gentle and Real AdaBoost algorithms outperform
the Modest type in all cases. As the number of iterations
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Fig. 5: Performance of the AdaBoost classifiers against the
number of iterations for the initial configuration proposed.

increase, the Modest AdaBoost’s performance gets closer to
the one of the Gentle and Real, but remains inferior. The
Gentle and Real AdaBoost algorithms have similar perfor-
mances, reducing the error rate to 18.5% with 28 past and
future samples.
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Fig. 6: Performance of the AdaBoost classifiers against the
number of neighboring frames providing features for the
classifiers.

After optimizing the number of past and future samples, we
have to find the optimal number of iterations. From Figure 7
one can see that after around 40 iterations, the error rate does
not vary significantly with the minimum obtained at 42 itera-
tions. Once again, the Gentle and Real AdaBoost algorithms
performed similarly, yielding an error rate of 17.8%.

B. Continuity

After analyzing the classification output signals, we noticed
that significant number of classification errors occur in areas
where there is a great deal of variation in the classifier output.
The middle graph of Figure 8 shows such a behavior.
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Fig. 7: Performance of the AdaBoost classifiers against the
number of iterations for the optimum number of past and
future frames.
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Fig. 8: Results for panoramic classification: ideal, without
post-filtering and with post-filtering.

An easy way to overcome this problem is to apply a
median filter on the classification. In other words, we classify
a frame as panoramic or not by a majority vote among the
classifications ofM neighboring frames. The effectiveness of
the post-processing by the median filter can be assessed in
Figure 8. This figure suggests that the median filter is quite
effective, in providing a decrease in classification error.

Once verified that median filter succeeds in reducing classi-
fication errors, we should define its lengthM . So, in order to
find out the best value for the minimum error rate, Segment
1 has been classified for many window sizes from 1 up to 60
as shown in Figure 9. The window sizeM = 29 provides the
best error rate of around 14%.

Although most results show that Gentle and Real AdaBoost
perform similarly, Gentle AdaBoost has shown a slightly
better error rate during filter size determination. Therefore,
we opted to use only the Gentle AdaBoost for the rest of the
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Fig. 9: Performance of AdaBoost classifiers after post-
processing by a temporal median filter, against the median
filter size.

experimental validation.

IV. VALIDATION

In this section we validate the technique developed in the
previous sections, including the several parameters that were
determined experimentally. In order to do so, we used a differ-
ent set of video segments, that had not been used during the
development stages. Table II assesses the proposed techniques
using two measurements: accuracy rate, which quantifies how
many samples have been correctly classified, and recall rate,
which indicates the number of panoramic frames that have
been correctly classified. In other words, accuracy rate means
the overall precision of the technique while recall rate means
the technique precision for panoramic takes.

TABLE II: Accuracy and Recall rate for validation videos.

Without Median Filter With Median Filter

Accuracy Recall Accuracy Recall

Segment 3 82.01% 84.13% 84.68% 88.43%

Segment 5 72.61% 89.27% 72.99% 91.72%

Segment 7 68.31% 79.93% 67.19% 80.59%

Segment 9 77.52% 76.54% 79.58% 79.29%

Segment 11 73.69% 84.11% 76.40% 87.51%

Mean 74.82% 82.80% 76.16% 85.51%

Std Deviation 3.95% 3.64% 4.86% 4.45%

Table II assesses two versions of the proposed technique:
with and without a median filter at the output of the AdaBoost
classifier. For most cases the median filter improves accuracy
rate as well as recall rate, suggesting that its use tends to
improve the performance of the proposed classifier.

Validation results have shown around 76% of mean accuracy
rate using median filter with mean recall rate of around 85%.
It is important to note the stability of the proposed techniques
since the standard deviations in Table II are only around 3 to
4%.

V. CONCLUSION

This paper proposed an automatic panoramic take detection
algorithm based on motion estimation between two sequential
frames feeding a machine learning algorithm.

For that, we have performed motion estimation via phase
correlation, providing motion information that has been post-
processed and then input to an AdaBoost classifier. After
parameter optimization, we have verified that the use of
features from neighboring frames is beneficial. Moreover, we
have found that a median filter applied to the AdaBoost
classifier output improves the classification performance.

Finally, once the technique and its parameters have been
defined, validation experiments have been performed. Results
showed that technique achieved around 76% accuracy rate and
85% recall rate. Considering that only motion features have
been employed, this is a reasonably good result.

One should also bear in mind that the panoramic frame
detection is not an end in itself. It is intended to be used as a
building block in the development of a video summarization
and retrieval framework. For example, other features, e.g.,
audio features [11] can be included in a complete system,
which will tend to improve the classification performance. In
this context, the obtained results are quite encouraging.
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