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ABSTRACT
This paper presents a study of the capacity of four speech sig-
nal features to assess speech perceptual quality and their use
in a typical two-stage algorithm for reverberant speech en-
hancement. This algorithm is divided into two blocks: one
that deals with the coloration effect, due to the early reflec-
tions, and the other for reducing the long-term reverberation.
The proposed features are skewness, two types of kurtosis
and Shannon’s entropy. This assessment capacity is evaluated
by two perceptual-quality measure specific for the speech-
reverberation context. Experimental results for a 204-signal
database show that the proposed features can achieve a cor-
relation coefficient of -75% (for entropy) which indicates the
potential use for entropy in speech enhancement algorithms.
Index Terms— Kurtosis, Skewness, Entropy, Perceptual

quality assessment, Inverse filtering.

1. INTRODUCTION

Speech intelligibility and quality are affected by several kinds
of impairments during signal generation, processing or trans-
mission. Such impairments, for example, may include speech
coding distortions, packet loss, time clipping, background
noise, echo and reverberation. Although most of these im-
pairments is considered by most people to better be absent,
the reverberation in a small amount turns the speech more
pleasant [1] for normal listeners. However reverberation
can drastically affect the performance of current automatic
speech/speaker recognition or hearing-aid systems, requiring
an appropriate speech enhancement technique to reduce its
effects.

The main objective of this work is to present a study of
possible signal features that can be used by a typical two-
stage speech dereverberation algorithm [2, 3]. The features
studied are skewness as given by [4, 5, 6], two definitions of
kurtosis [2, 7] and Shannon’s entropy as given by [8].

This paper is organized as follows: in Section 2, a typi-
cal two-stage speech dereverberation algorithm is described.
Section 3 defines the 4 signal features (skewness, 2 definitions
of kurtosis and entropy) which are going to be studied and
how they are related to reverberation. Section 4 describes the
speech database NBP (New Brazilian Portuguese database)
used to study the features, a subjective score and an objective
score associated to perceptual quality of reverberant speech
signals. In Section 5, the experimental results for the capacity

of each signal feature to assess speech perceptual quality of
the NBP database and the discussion about these results are
presented. Finally, a conclusion concerning the use of this
approach in the dereverberation scenario is included in Sec-
tion 6.

2. DEREVERBERATION ALGORITHM

A typical dereverberation algorithm is called two-stage algo-
rithm, composed by two isolated signal processing blocks, in-
verse filtering and spectral subtraction, as shown in Figure 1.
y(n), z(n) and x(n) are the reverberant speech, inverse-
filtered speech and dereverberated speech (or spectral-subtracted),
respectively.
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Fig. 1. Diagram of the two-stage dereverberation algorithm.

Its concept comes from the commonly adopted model of
reverberant room impulse response (RIR), which is composed
by three parts: the direct path signal; the early reflections,
which presents a non-flat frequency response that distorts the
speech spectrum; and finally the late reverberation, which
causes smearing of the speech spectrum, reducing the intel-
ligibility and quality of the signal [3].

The distortions caused by the early reflections are com-
monly reduced by inverse filtering the reverberant speech,
generating an estimate of the original speech signal. The
inverse filter optimizes a higher order statistics of the linear
prediction (LP) residue of the inverse filtered speech, which
may be implemented as a block Least Mean Squares (LMS)-
like adaptive algorithm [3], using the higher order statistics as
adaptive cost function.

3. HIGHER-ORDER STATISTICS

According to [2, 8] higher order statistics as skewness, kur-
tosis and entropy can be used to estimate the reverberation
amount in a speech signal. Intuitively, the more accurate is
this estimation, the more efficient is expected to be the in-
verse filtering as indicated by [2], which shows that the kur-



tosis can express the reverberation, thus being applied to the
inverse filtering.

According to [8], especially in short frames, the samples
of the LP residual signal are less correlated than the samples
of the speech signal. For this particular reason, the follow-
ing statistics metrics are applied directly to the LP residue of
y(n), denoted by yr(n). The reverberant signal z(n) is di-
vided into M frames of N samples with O% overlap, where
N = Nms ×

Fs

1000
, Nms is the frame size in milliseconds and

Fs is the sampling frequency. The LP residues are calculated
for each frame using an LP filter with L coefficients, generat-
ing the frame residue yr(n; m), where n is the sample index
within themth frame.

3.1. Skewness

The skewness is a measure of asymmetry of the probability
distribution around the sample mean. In this work it is defined
as [4, 5, 6]

S(m) =
E[yr

3(n; m)]

E3/2[yr
2(n; m)]

, (1)

where E[·] denotes the statistical mean operator over the sam-
ples n.

3.2. Kurtosis

The kurtosis is a measure of the peakiness of a probability
distribution of a real-valued random variable. There are sev-
eral definitions found in the literature [2, 9, 10, 7, 11, 12, 13],
from which two were chosen to be studied: The first is math-
ematically denoted by [2]

K1(m) =
E[yr

4(n; m)]

E2[yr
2(n; m)]

− 3, (2)

and the second by [7]

K2(m) = E[yr
4(n; m)] − 3E

2[yr
2(n; m)]. (3)

3.3. Entropy

The entropy is a measure of a random variable uncertainty and
it is usually referred to Shannon’s entropy. According to [8],
the entropyH(m) of yr(n; m) can be estimated from aB-bin
(B = 7) histogram of its samples in each frame, generating
the estimated probability p(i; m) of the ith bin formth frame
and

H(m) = −
B∑

i=1

p(i; m) log(p(i; m)). (4)

3.4. Quantifying reverberation

The reverberation amount in a speech signal can be roughly
estimated by averaging the higher order statistics measures
over the frames [2], providing a single measure for a given
speech signal.

4. REVERBERANT SPEECH QUALITY
ASSESSMENT

In order to study the capacity to relate to perceptual reverber-
ation effects of a signal feature, a speech database composed
of three distinct reverberation approaches, a subjective and an
objective scores for reverberant speech quality were chosen
and are described next.

4.1. Speech database

The experimental part of this work is entirely based on the so-
called New Brazilian-Portuguese (NBP) database [14], which
is comprised of 204 speech signals of Fs = 48 kHz sampling
frequency and different reverberation types and intensity lev-
els. The complete database was generated from (and includes)
4 anechoic speech signals (2 from a male speaker and 2 from
a female speaker) contaminated with three distinct reverbera-
tion approaches: artificial, natural and real.

The artificial and natural approaches convolves 6 artifi-
cially generated and 17 directly recorded RIRs, respectively,
with the 4 anechoic speech signals. In the real approach, the
reverberant speech signals were obtained from direct record-
ing the 4 anechoic signals played in 7 distinct rooms with a
total of 27 different configurations. The whole database is
composed of 51 different scenarios with reverberation times
in the range T60 = [120, 920]ms.

4.2. Quality assessment scores

The 204 speech signals perceptual quality were assessed by
an absolute category rate mean opinion score (MOS) test with
30 listeners. Due to the cost of subjective tests, it is common
to use an objective score highly correlated to the MOS score
to asses the quality of a speech signal.

The objective score used in this work is estimated by the
measure QMOS for quality assessment of reverberation pro-
posed in [14]. The measure QMOS is derived from the mea-
sure Q, which results from the combination of three features
estimated from the room impulse response (RIR). These fea-
tures are the reverberation time (T60), the room spectral vari-
ance (σ2

I ) and the direct-to-reverberant energy ratio (R). The
measureQ is expressed as

Q = −
T60 σ2

I

Rγ
, (5)

where the exponent γ = 0 corresponds to Allen’s original
measure and the best system performancewas empirically ob-
tained using γ = 0.3.

The Q score is mapped to MOS by a third order mapping
function

QMOS = α(x1Q
3 + x2Q

2 + x3Q + x4) + β, (6)

where the coefficients x1, x2, x3, x4, α and β are empirically
determined during the system training. In practice, the co-
efficients obtained for the NBP database were x1 = 0.0017,
x2 = 0.0598, x3 = 0.7014, x4 = 4.5387, α = 1.0000 and
β = 1.85 × 10−10.



5. EXPERIMENTAL RESULTS

5.1. Comparative Analysis

The performance of the higher order statistics measures were
calculated by the Pearson’s correlation (ρ) between the mea-
sures and MOS scores. The perceptual quality of the rever-
berant speech signals are represented by the subjective and
objective MOS scores, and the correlation analyzes the de-
pendency between these perceptual measures and the higher
order statistics measures used in this work.

Table 1 presents the correlations between the subjective
MOS and the higher order statistical measures S, K1, K2

and H, represented by ρS , ρK1
, ρK2

and ρH, respectively.
These correlations were calculated to several different val-
ues of LP filter order, frame size and overlap percentage,
where the ranges were L = [10, 30, 50], Nms = [10, 32]
and O = [0%, 50%], thus a setup can be described by
(L, Nms, O%). The best correlation performance was 40%
for S with the setups (50, 10, 0%) and (50, 10, 50%); -28%
for K1 with (10, 10, 0%) and (30, 10, 0%); 50% for K2

with (30, 10, 0%); and -72% for H with (30, 32, 0%) and
(50, 32, 0%). The performance of H is clearly superior than
the other higher order statistical measures, indicating that the
entropy can be more appropriated than the other measures as
the cost function of the adaptive inverse filtering process.

Table 1. Correlation coefficients ρS , ρK1
, ρK2

and ρH be-
tween MOS and S, K1, K2, H, respectively.

Setup Correlation coefficients (%)
L Nms O% ρS ρK1

ρK2
ρH

10 10 0 37 -28 48 -63
10 10 50 37 -27 49 -62
10 32 0 21 -19 32 -69
10 32 50 22 -18 31 -67
30 10 0 35 -28 50 -67
30 10 50 36 -27 49 -66
30 32 0 20 -17 35 -72
30 32 50 21 -16 35 -71
50 10 0 40 -26 49 -68
50 10 50 40 -26 49 -68
50 32 0 25 -15 35 -72
50 32 50 27 -14 35 -71

Table 2 presents the same layout and characteristics of
Table 1, except for use of objective MOS (QMOS), instead
of subjective MOS as perceptual quality measure to calcu-
late the correlation performance of the higher order statistical
measures S, K1,K2 andH. The best correlation performance
was 45% for S with the setup (50, 10, 0%); -32% forK1 with
(10, 10, 0%) and (30, 10, 0%); 51% for K2 with (30, 10, 0%)
and (50, 10, 0%); and -75% for H with (30, 32, 0%) and
(50, 32, 0%). The results of this table confirm the perfor-
mances found in Table 1.

For presentation purpose, MOS, QMOS and H scores av-
erage and standard deviation for the 4 instances (one for each
anechoic signal) of each of the 51 scenarios were calculated.
Figures 2 and 3 show the relation betweenMOS andH scores

Table 2. Correlation coefficients ρS , ρK1
, ρK2

and ρH be-
tween QMOS and S, K1, K2,H, respectively.

Setup Correlation coefficients (%)
L Nms O% ρS ρK1

ρK2
ρH

10 10 0 41 -32 49 -64
10 10 50 41 -31 49 -63
10 32 0 24 -22 29 -72
10 32 50 26 -21 30 -70
30 10 0 41 -32 51 -68
30 10 50 40 -31 50 -67
30 32 0 24 -20 34 -75
30 32 50 25 -20 34 -73
50 10 0 45 -30 51 -69
50 10 50 44 -29 50 -68
50 32 0 28 -18 34 -75
50 32 50 31 -18 35 -73

for the 51 reverberation scenarios of NBP using with standard
deviation of H as error bar. Both figures clearly exemplifies
the negative correlation, because as the subjective MOS val-
ues increase, the entropy values decrease, not affecting their
high correlation.

This reduced data approach was adopted to better show
the entropy performance with error bar, once the 204-signals
figure made the plot confusing and difficult to analyze.

TheH score was the only higher order statistical measure
used in this work that could associate the appropriated score
(position in the plot) for the anechoic speech scenario, which
is the point in the most right position, around 4.5 MOS in
Figure 2. In the reduced data approach, the correlation coef-
ficient between MOS and H and between QMOS and H are
-86% and -89%, respectively.
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Fig. 2. Relation between the subjectiveMOS andH scores for
the 51 reverberation scenarios of NBP with standard deviation
as error bar.
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Fig. 3. Relation between the objective MOS (QMOS) and H
scores for the 51 reverberation scenarios of NBP with stan-
dard deviation as error bar.

5.2. Discussion

Observing the correlation performances presented in Tables 1
and 2, it can be concluded that the overlap percentages O%
make no difference in efficiency of any of the four higher sta-
tistical measures. The LP filter order L also seems not to af-
fect significantly the measures performances, reaching a max-
imum of 6% difference in correlation for all the measures,
when comparing setups with the same frame size Nms. The
only parameter that seems to be relevant for the efficiency of
the measures in the limited experimental scenario adopted in
this work is the frame size Nms, due to the fact that differ-
ent values of Nms generate significantly different correlation
performances for all measures. In addition, the best perfor-
mances for S, K1 andK2 were reached usingNms = 10; and
forH were reached usingNms = 32.

The use of S and K1 in the inverse filtering part of a two-
stage dereverberation algorithm has shown to be adequate [2,
3, 6, 15]. However the use of other higher order statistical
measures that better estimate the perceptual quality of a re-
verberant speech such as K2 and H indicated in this work,
suggests that these measures are appropriated to be applied in
the adaptive inverse filtering for speech dereverberation.

6. CONCLUSIONS

This work analyzes the capability to assess the perceptual
quality of a reverberant speech signal of four higher order
statistical measures: skewness (S), two versions of kurtosis
(K1 and K2), and entropy (H). The analysis was performed
by verifying the correlation coefficients between these four
measures and two different perceptual reverberation quality
scores, the subjective MOS and an objective MOS (QMOS),
applied to a 204-signals reverberant speech database, called
NBP database, which consists of 51 reverberation scenarios
combined with 4 anechoic speech signals. The best perfor-
mances were -72% and -75% reached by H, whose perfor-
mances were more than 20% higher than the performances

of K2, which was the measure that reached the second best
scores. Future research developments may include the use of
entropy as cost function for improving the adaptive inverse
filtering block for speech dereverberation algorithm.

7. REFERENCES

[1] R. Appel and J. Beerends, “On the Quality of Hearing One’s Own
Voice,” J. Audio Engineering Society, vol. 50, no. 4, pp. 237–248,
April 2002.

[2] B. W. Gillespie, H. S. Malvar and D. A. F. Florêncio, “Speech dere-
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[9] J. P. LeBlanc and P. L. De Leòn, “Speech Separation by Kurtosis Max-
imization,” Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, Seattle, USA, May 1998.

[10] Z. Xiong, Z. Dongfeng, J. Zhigang andW. Anhong, “AModified Blind
Equalization Algorithm Based on Kurtosis of Output Signal” Proc.
IEEE Asia-Pacific Radio Science Conference, Qingdao, China, Aug.
2004.

[11] O. Tanrikulu and A.G. Constantinides, “Least-mean Kurtosis: A
Novel Higher-order Statistics Based Adaptive Filtering Algorithm,”
IET Electronic Letters, vol. 30, Feb. 1994.

[12] D. I. Pazaitis and A. G. Constantinides, “A Novel Kurtosis Driven
Variable Step-Size Adaptive Algorithm,” IEEE Trans. on Signal Pro-
cessing, vol. 47, Mar. 1999.
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