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ABSTRACT

This paper considers the problem of quantifying the reverberation
perception on speech signals. We investigate several combinations
of three distinct reverberation-related features (namely, the rever-
beration time (RT), room spectral variance (RSV), and direct-to-
reverberant energy ratio (DRR)), which can be extracted directly
from the associated room impulse response. Particular attention is
also paid on different post-processing nonlinear mappings in order
to provide a more effective quality evaluation algorithm. Results in-
dicate that the RSV feature can be completely disregarded if the RT
and DRR estimates are properly weighted. Performance of resulting
measure is slightly superior in comparison to previous state-of-the-
art method, particularly with respect to the computational cost and
robustness (by disregarding the RSV estimation), but also on the sta-
tistical correlation level with subjective grades of a large dataset of
reverberant speech.

Index Terms— Speech quality assessment, reverberation,
MOS, room impulse response

1. INTRODUCTION

Reverberation is one of the most intricate problems in modern acous-
tical systems, highly affecting the performance, for instance, of a
telepresence device or an automatic speech-recognition system. For
that matter, in order to ensure appropriate functioning and user sat-
isfaction in these types of systems, reverberation levels have to be
regularly monitored and even reduced, if necessary.

This paper considers the human perception of the reverberation
effect on high-quality speech signals. Several audio features are con-
sidered for that purpose and their optimal combination on a closed-
form metric is investigated. Performance of the resulting estimator
is compared to the subjective scores of two speech databases with
distinct levels of reverberation.

The organization of the paper is as follows: In Section 2, we
characterize the reverberation effect, and the three main features to
be used in estimating the perceived quality of reverberant speech,
namely: reverberation time, room spectral variance, and direct-to-
reverberant energy ratio; In Section 3, two established objective
measures based on these features are presented, whereas Section 4
details the proposed analysis, which considers a large set of feature
combinations and several MOS-mapping functions, to maximize
the correlation levels with the subjective scores of two distinct
databases; Section 5 shows the analysis results, which can be re-
garded as a new objective measure for reverberation assessment,
along with the complete step-by-step algorithm for its implementa-
tions; Finally, Section 6 summarizes the main contributions of the
paper.

2. PRIOR WORKS IN THE FIELD

Previous works in reverberation assessment include, for instance,
references [1]–[7].

In [1], a pioneering work by Allen describes what is perhaps
the first attempt to quantify the reverberation effect, which was later
validated experimentally in [2].

In [3], [4], authors present the so-called MARDY database, in-
cluding 32 speech signals with different reverberation levels, and a
new objective reverberation measure. In [5], authors introduce a new
blind estimate for reverberation perception, based solely on the re-
verberated signal, what enables a real-time monitoring without dis-
rupting system’s operation.

In [6], authors investigated several speech features for reverbera-
tion assessment, which were later combined to generate an extension
of Allen’s non-blind metric with improved estimation performance,
as presented in [7].

The present paper extends even further Allen’s work, by consid-
ering several alternative combinations of three basic reverberation
features (as detailed in Section III below). Results indicate a sig-
nificant improvement in performance, achieving correlation scores
of 92.3% and 95.1% with subjective grades of two independent
databases of reverberated speech signals.

3. REVERBERATION CHARACTERIZATION

Reverberation is the effect where the direct sound combined with its
attenuated-and-delayed versions (generated from reflections on the
room surfaces) are perceived altogether as a single sound signal. Al-
though some reverberation can be acoustically pleasant, excessive
levels affects speech intelligibility, thus restricting conversation effi-
ciency [8].

The discrete-time reverberated speech, sr(n), is commonly
modeled as the convolution of a given speech signal, s(n), with a
length-N room impulse response (RIR), h(n), which mathemati-
cally is given by

sr(n) =

N∑
l=0

h(l)s(n− l). (1)

For analytical purposes, the RIR is often divided into two parts as
represented in Fig. 1:

• Early reflections: These are essentially impulsive compo-
nents, which contain most energy of the RIR and are con-
strained to the first 80 − 100 ms portion of h(n). The time,
nd, it takes for the direct sound to reach the listener is also
observed in this part of RIR.
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• Late reverberation: This includes the remaining portion of
the RIR, and presents a diffuse nature, indicating the random
nature of the process after a given interval of time.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Time (ms)

N
o
rm

a
li
z
e
d
|h

(n
)|

Late reverberation

Early reflections

Fig. 1. Example of practical RIR emphasizing its early reflections
and late reverberation portions.

As verified in [6], there are three measures highly associated to
the perception of the reverberation effect: reverberation time (RT),
room spectral variance (RSV), and direct-to-reverberant energy ratio
(DRR).

3.1. Reverberation Time

The RT, T60, is defined as the time the sound pressure takes to de-
crease 60 dB from its maximum energy after the steady-state exci-
tation is instantly terminated. Its perceptual correspondence is the
liveness, which is associated to the reflectiveness of the walls. In
practice, the higher the value of T60, the more lasting is the perceived
reverberation effect on a given sound signal. Typical values of T60

range from a few milliseconds, in anechoic rooms; around 100–200
ms, in acoustically-treated recording rooms; and up to a few seconds
in large or acoustically non-treated reverberating spaces.

The adopted algorithm to estimate T60 [9] combines the models
for exponential decay of RIR and the stationary noise floor by using
nonlinear optimization, providing a quite robust estimation.

3.2. Room Spectral Variance

The RSV function, σ2
I , is given by [10]

σ2
I = (I(k)− I(k))2, (2)

where {·} denotes the average of a function in the discrete frequency
domain k and I(k) is the relative acoustic intensity level, defined as

I(k) = 10 log10

[
|H(k)|2

(|H(k)|2)

]
(dB), (3)

where H(k) is the discrete Fourier transform of h(n).
In practice [10], the value of σ2

I depends on the critical distance
dc, defined as the minimum distance at which the energy of the rever-
berant sound is no more affected by the source-microphone distance.

3.3. Direct-to-Reverberant Energy Ratio

The DRR, R, is the energy ratio between the direct and reverberant
portions of RIR. The direct energy Ed corresponds to the accumu-
lated RIR energy within a discrete time interval equivalent to 2.5 ms
around nd, and the reverberant energy Er is the RIR energy of the
remaining time interval, as given by [11, 12]

R =
Ed

Er
=

∑(nd+n1.5)

(nd−n1)
h2(n)∑N

(nd+n1.5)
h2(n)

, (4)

where n1 and n1.5 are the discrete time equivalents to 1 ms and
1.5 ms continuous-time intervals. According to [13], only the signal
components 20 dB above the noise floor level should be considered
in h(n), in order to reduce the noise influence when estimating the
DRR.

4. OBJECTIVE MEASURES FOR REVERBERATION
ASSESSMENT

Among the several measures for evaluating the perceived quality of
reverberant speech signals, the first and yet one of the most efficient
is the Allen’s score P , defined as [1]

P = Pmax − σ2
IT60, (5)

where Pmax is upper value of P . Although Allen’s score is quite ef-
fective, even for today’s standards, it was primarily devised for short
source-listener distances, when the RSV and DRR become quite cor-
related [14].

The QAreverb measure Q developed in [7] overcomes that gap
by incorporating the DRR measure in its formulation, such that

Q = −T60σ
2
I

Rγ
, (6)

with γ = 0.3 obtained empirically during the system’s training
stage. Taking the DRR measure explicitly into account seems to ex-
tend the estimation reliability of the QAreverb measure beyond the
critical-distance case and into a wider range of practical reverbera-
tion scenarios.

5. PROPOSED ANALYSIS

The proposed analysis generalizes the QAreverb measure by associ-
ating a different exponent to each individual feature, T60, σ2

I , and R,
leading to the modified closed-form expression

Qm = − (T60)
α(σ2

I )
β

(R)γ
. (7)

In this work, the values of α, β, and γ are chosen in order to max-
imize Pearson’s correlation [15] with the subjective scores of two
independent databases described below.

Besides the generalized QAreverb approach, three different non-
linear mapping functions are considered in a similar manner to other
objective evaluators:

• A ITU P.563-like mapping of the form [16]

Q(a)
m = x1Q

3
m + x2Q

2
m + x3Qm + x4; (8)

• The mapping employed on the ITU recommendation for per-
ceptual evaluation of speech quality (PESQ) [17]

Q(b)
m = 1 +

4

1 + ey1Qm+y2
; (9)
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• A modified PESQ-like mapping defined as

Q(c)
m = z3 +

z4
1 + ez1Qm+z2

. (10)

In addition to each of the nonlinear mappings listed above, a
subsequent linear mapping of the form

Q
(x)
MOS = vQ(x)

m + w, (11)

with x = a, b, c, was also considered for a proper scaling adjust-
ment [18] of the final estimation score, and the baseline QAreverb
mapped score QMOS is given by Q applied to the mappings of
Eqs. (8) and (11).

In this work, two databases were employed to evaluate the per-
formance of the generalized QAreverb system:

• Database A [7]: This database comprises a total of 204 speech
signals, sampled at Fs = 48 kHz, with distinct levels of re-
verberation, including: 4 anechoic (2 by a male speaker and 2
by a female speaker) signals; 108 directly degraded signals in
real environments comprising 7 different rooms (with RT in
the range of T60 = {140, 390, 570, 650, 700, 890, 920} ms)
and several source-microphone distances; 68 degraded sig-
nals with estimated RIRs from 4 real environments (with
T60 = {120, 230, 430, 780} ms and distinct source-microphone
distances for each case, as detailed in [19]); and 24 degraded
signals with 6 artificial RIRs with the early reflections ob-
tained via the image method [20], with a fixed d = 1.8 m in
a room of dimensions length×widht×height = 4 × 3 × 3 m.
As regards the late reverberation, the feedback delay network
method [21] was used to emulate T60 = {200, 300, 400} ms
and a modified version of Gardner’s method [22], which was
devised to emulate reverberation times above 400 ms, was
used for T60 = {500, 600, 700} ms.
These three scenarios altogether include only 12 signals with
a source-microphone distance shorter than the theoretical crit-
ical limit, where the RSV and DRR metrics are highly corre-
lated [14].
All 204 Database A signals were sorted according to the
corresponding MOS and then subdivided into two 102-signal
databases, Database A1 and Database A2, collecting the
odd- and even-index signals, respectively. Database A1 was
used for training of all algorithms described above, whereas
Database A2 was used only for testing the algorithm perfor-
mances on untrained data.

• Database B: the so-called MARDY database [4], includes 16
reverberant signals recorded directly from a studio environ-
ment, configuring naturally degraded signals, and their de-
reverberated versions using delay-and-sum algorithm, mak-
ing a total of 32 speech signals.

The A1 subset of Database A was used in the system training to
obtain the best experimental values for the α, β, and γ exponents in
Eq. (7) and all coefficients in Eqs. (8)–(11). The remaining A2 subset
and Database B were used only on the validation stage of previous
results.

6. EXPERIMENTAL RESULTS

6.1. Estimating α, β, and γ

In order to select the best combination for the α, β, and γ exponents
in Eq. (7), each of these parameters was varied in the interval [0, 1]
with steps of 0.05 in a total of 213 = 9261 indexed combinations.
Each setup leads to a different set of Qm scores, whose correlation

factors ρ with the subjective grades of the testing Database A1 are
depicted in Fig. 2, where the crosses indicate a combination with
β = 1 and the scattered dots correspond to a combination with β =
0. It can be observed that in every region of this figure there is a
parameter combination with β = 0 that yields a higher performance
than a similar combination with a different value of β.
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Fig. 2. Statistical correlation between Qm and the subjective MOS
of Database A1 for all (α, β, γ) combinations, where “×” represents
a combination with β = 0 and “.” represents a combination with
β = 0.5 or β = 1.

Table 1 presents the three best correlation scores for the mod-
ified extended QAreverb approach and the subjective scores of
Database A1. From these results, one readily observes that all three
setups include β = 0, indicating that the RSV feature becomes
redundant with the RT and DRR features, and can be removed from
the final score calculation.

Table 1. Correlation scores ρ (%) for all databases for best (α, β, γ)
combinations using training Database A1.

Parameters Correlation (Databases)
α β γ ρ(A1) ρ(A2) ρ(A) ρ(B)

0.55 0 0.15 90.5 89.5 90.0 94.2
0.60 0 0.15 90.5 89.5 90.0 94.1
0.65 0 0.15 90.5 89.4 89.9 94.0

6.2. Estimating α, β and γ with mappings

The choice of the best (α, β, γ) parameters was also performed by
taking the nonlinear mappings detailed in Section 5 into account.

Table 2 shows the three best performances for the three map-
pings defined in Eqs. (11), (9), and (10). The best combinations for
each mapping are somewhat consistent in the sense they all present
very small values of β, once again corroborating the conjecture that
the RSV is somewhat redundant with the RT and DRR features.
From this table, one also notices that PESQ-like mappings seem
to work minimally better than the P.563-like mapping, due to the
fact that their free parameters adjustment for a good fitting leads to
slightly higher correlations for Databases A and B.
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Table 2. Correlation scores ρ (%) for all databases and distinct
nonlinear mappings for best (α, β, γ) combinations using training
Database A1.

Mapping Parameter Correlation (Databases)
α β γ ρ(A1) ρ(A2) ρ(A) ρ(B)

Q
(a)
MOS

1.00 0.10 0.35 93.0 91.7 92.3 95.0
1.00 0.15 0.35 93.0 91.7 92.3 95.0
1.00 0 0.40 93.0 91.7 92.3 95.1

Q
(b)
MOS

0.70 0 0.2 93.9 91.9 92.9 95.3
0.90 0.05 0.25 93.9 91.9 92.9 95.3
0.85 0.05 0.25 93.9 92.0 92.9 95.4

Q
(c)
MOS

0.85 0 0.25 93.9 92.0 92.9 95.4
0.70 0 0.20 93.9 91.9 92.9 95.3
0.90 0.05 0.25 93.9 91.9 92.9 95.3

6.3. Comparison to other systems

In this section, we compare the performance for the modified QAre-
verb measure (using α = 0.85, β = 0, γ = 0.25, and the mod-
ified PESQ-like mapping described in Eq. (10)) to other objective
measures, for reverberation assessment or not, previously presented
in the literature. Correlation results from the scores yielded by all
methods and the subjective grades for the two databases employed
in this work are summarized in Table 3.

Table 3. Statistical correlation coefficient ρ (%) between subjective
grades and objective scores by several quality-evaluating algorithms
for the Databases A and B.

Algorithm Databases
A B

W-PESQ 88.6 77.7
P.563 58.8 53.9
RDT 60.6 64.2

SRMR 80.6 76.9
QMOS 91.2 94.9
Q

(c)
MOS 92.9 95.4

From this table, one notices how the modified QAreverb does
not significantly diminish its performance by disregarding the RSV
feature. In fact, the correlation increases in 0.5% for Database B and
1.7% for Database A, which is statistically significant for the amount
of signals (204) being considered. Furthermore, the suppression of
RSV reduces the computational cost in about 5% compared to the
baseline score QMOS. The estimated scores for the chosen configu-
ration of the modified QAreverb system are shown in Figs. 3 and 4
for Databases A and B, respectively, illustrating its ability to predict
such scores in a successful manner.

7. CONCLUSIONS

This paper analyzed several combination strategies for the RT, RSV,
and DRR features to estimate the human perception of the reverber-
ation effect in speech signals. Several mapping functions were also
put to the test altogether with all feature combinations previously
considered. Performance of the new objective measure was vali-
dated for several reverberating scenarios, yielding 92.9% and 95.4%
statistical correlations with the subjective MOS of two independent
databases and reducing in about 5% the measure computational cost.
Results also indicated that the RSV features little contributes to the
final estimate if the RT and DRR measures are properly combined
with an effective nonlinear mapping. This can be explained from the
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Fig. 3. Objective scores (large dots) yielded by modified QAreverb
algorithm and subjective grades (solid line) for all 204 signals in
Database A.
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Fig. 4. Objective scores (large dots) yielded by modified QAre-
verb algorithm and subjective grades (solid line) for all 32 signals
in Database B.

fact that RSV and DRR features tend to aggregate similar informa-
tion about the perceived reverberation effects, except from the fact
that RSV is region limited with respect to the source-listener posi-
tioning. This conclusion can be further exploited on the development
of a more reliable and simplified blind counterpart of the QAreverb
algorithm.
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