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Abstract
This paper describes an optimization strategy based on a per-
ceptual assessment criterion for dereverberation algorithms.
The complete procedure is applied to the adaptive inverse-
filtering (AIF) and spectral subtraction (SS) stages of a given
dereverberation algorithm using the so-called QAreverb qual-
ity measure. Experimental results, using a 204-signal speech
database, indicate that the associated algorithm can be greatly
simplified (in about 97% of the overall computational complex-
ity) by removing the AIF stage. In addition, a fine tuning of
the SS stage is able to improve in 6% the algorithm’s QAreverb
score, resulting in a much simpler and more efficient algorithm
in a perceptual point of view.

1. Introduction
Reverberation can strongly affect the performance of state-of-
the-art systems of speech/speaker recognition and hearing-aid,
motivating the use of speech enhancement techniques. Al-
though reverberation can be damaging to speech intelligibility
and perceptual quality, in a small amount it makes speech more
pleasant to common listeners [1]. The use of a microphone ar-
ray is commonly associated to dereverberation techniques, but
for the applications previously mentioned the use of one micro-
phone approach is more indicated.

This paper analyzes and proposes an optimization proce-
dure for dereverberation algorithms based on a perceptual as-
sessment objective measure [2]. The entire procedure is ap-
plied to a two-stage one-microphone algorithm for reverberant
speech enhancement introduced in [3]. Such algorithm is di-
vided into two blocks: An initial adaptive inverse filter (AIF)
reduces the effects of the early reverberation components, and
a subsequent spectral-subtraction (SS) algorithm is used to mit-
igate the late-reverberation effects. The procedure is applied
to these two blocks; first individually and later in a combined
manner. Results provided by the so-called QAreverb perceptual
measure indicate that the AIF can be entirely removed whereas
the SS stage can be properly tuned to maximize the resulting
perceptual performance.

To introduce the aforementioned contributions, this paper is
organized as follows: In Section 2, the original dereverberation
algorithm [3] is detailed with emphasis given on its two-stage
nature; Section 3 considers the different optimization strategies
applied to the original algorithm, including the perceptual mea-
sure and speech databases employed, in an attempt to increase
the perceived quality and reduce the associated computational
cost. Section 4 shows the results of the training experiments
used in the parameter optimizations and also the test experi-
ments analyzing in details the results achieved with the opti-

mized parameters. Finally, a conclusion concerning the overall
performance increase and computational reduction is provided
in Section 5.

2. A Two-Stage Dereverberation Algorithm
The algorithm introduced [3] consists of two isolated signal-
processing blocks (hereby referred to as the AIF and SS stages),
as illustrated in Fig. 1, where y(n), z(n), and x(n) are the re-
verberant, inverse-filtered, and spectral-subtracted (or derever-
berated) signals, respectively.

INVERSE FILTERING

reverberant
speech

y(n)

z(n)

x(n)

SPECTRAL 
SUBTRACTION

dereverberated
speech

Figure 1: Diagram of the two-stage algorithm.

The main concept behind this algorithm comes from the
commonly adopted model for the reverberant room impulse re-
sponse (RIR), which is composed by three parts: the direct path
signal, which corresponds to the direct path speech from the
source to the listener; the early reflections, which presents a
non-flat frequency response that distorts the speech spectrum;
and finally the late reverberation, which causes smearing of the
speech spectrum, reducing the intelligibility and quality of the
signal [3]. This two-stage algorithm was conceived to mitigate
the effects due to the early and late reflections, which are asso-
ciated with coloration and long-term reverberation [4], respec-
tively, as detailed in the following subsections.

2.1. Inverse filtering

The main objective of the AIF block is to reduce the coloration
effect by reconstructing an estimate of the original (clean)
speech signal. This block is based on [5], where a multi-
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microphone setup is used to determine an RIR estimate by max-
imizing the kurtosis of the linear prediction (LP) residue. There-
fore, an inverse filter for the estimated RIR is applied to the
reverberant speech to obtain a cleaner signal.

In this context, the inverse-filtered speech z(n) can be de-
scribed as

z(n) = hg(n) ∗ y(n), (1)

where hg(n) =
∑L−1
j=0 gjδ(n− j) is the RIR.

The K-length inverse filter is then given by g =
[g0, g1, . . . , gK−1]T , where g is designed to maximize the kur-
tosis of z(n) using, for instance, a length-K block least-mean-
squares (LMS) adaptive algorithm. Instead of using y(n), how-
ever, the adaptive algorithm uses the block version of the LP
residue defined by yr(m) = [yr(m( 1

2
K)), . . . , yr(m( 1

2
K) +

K − 1)]. Equivalently the m-th block of inverse-filtered LP
residue zr(m) is generated from the block version of Eq. (1).
The adaptive algorithm uses the average kurtosis of zr(m), as
cost function:

J̄ =
1

M

M−1∑
m=0

J(m) =
1

M

M−1∑
m=0

(
E[zr

4(m)]

E2[zr2(m)]
− 3

)
, (2)

where E[·] denotes the statistical mean operator, such that
f(m) = ∇J(m).

To avoid a large eigenvalue spread of the input-signal au-
tocorrelation matrix, which leads to slow or no convergence,
a frequency-domain adaptive algorithm may be employed by
applying a fast Fourier transform (FFT) to all length-K data
blocks [6]. Thus, by defining G(i) as the FFT of g(i) from the
i-th iteration, F(m) and Yr(m) being respectively the FFTs of
f(m) and yr(m), the AIF update equation becomes

G(i+ 1) = G(i) +
µ

M

M−1∑
m=0

F(m)Y∗
r (m), (3)

where µ is the adaptive-filter step size and the superscript aster-
isk represents the complex-conjugate operation. Once the op-
timum filter g is obtained, the inverse-filtered speech z(n) is
calculated according to Eq. (1).

Far all practical issues, the algorithm described in [3] uses
an adaptation step size µ = 3 × 10−9, an LP filter length
K = 10, and a block size K = 0.032× Fs, with 50% overlap
between consecutive blocks, Fs being the sampling frequency.
Each G is updated until a number of Ni = 500 iterations is
achieved.

2.2. Spectral subtraction

The SS block, as detailed in Fig. 2, aims at the reduction of
the long-term reverberation effect, which is caused by the late
reverberation component of the RIR. The SS stage starts with
the inverse-filtered speech z(n) and outputs the dereverberated
speech x(n), whose phase is determined directly from z(n).

Let Sz(k,m) = |Sz(k,m)|ejϕz(k,m) be the FFT of them-
th frame of the windowed version of z(n), using a 32 ms ham-
ming window with 24 ms overlap between consecutive frames.
Let also ρ be the length of the early reflection in frames, com-
monly considered around 50 ms, corresponding to ρ = 7 with
Fs = 48 kHz; γ be the scaling factor that establishes the rel-
ative strength of the late impulse components after the inverse
filtering being set to γ = 0.35; and w(m) be an asymmetrical
smoothing window based on the Rayleigh distribution, given by{

w(m) =
(
m+a
a2

)
e

(
−(m+a)2

2a2

)
, if m > −a

w(m) = 0, otherwise
, (4)

inverse-filtered
speech

z(n) x(n)

dereverberated
speech

FFT

| |2

Sz(k, i)

HAMMING 
WINDOWING

PHASE

ejϕ(k,i)

SUBTRACTION

IFFT

|Sx(k, i)|
√

×

|Ss(k, i)|2

|Sz(k, i)|2

Figure 2: Block diagram of the SS dereverberation stage.

where a < ρ controls the overall function time spread. In the
original configuration, a = 5 frames, thus providing a reason-
able match to the shape of the equalized impulse response.

The model of the power spectrum of the late reverberation,
in order to perform the spectral subtraction, can be described as

|Sl(k,m)|2 = γw(m− ρ) ∗ |Sz(k,m)|2, (5)

where k and m are the frequency- and frame-domain indexes,
respectively.

Assuming that the early and late components are mutually
uncorrelated, the power spectrum of the early impulse compo-
nents can be estimated by subtracting the power spectrum of the
late impulse components from the inverse-filtered speech. The
spectrum subtraction scheme performs a weighting in the power
spectrum of z(n), where the block SUBTRACTION is given by

|Ss(k,m)|2 = max

[
1− |Sl(k,m)|2

|Sz(k,m)|2 , ε
]
, (6)

where ε = 0.001 corresponds to the maximum attenuation of
30 dB, and finally the magnitude spectrum of x(n) is given by

|Sx(k,m)| =
√
|Sz(k,m)|2 × |Ss(k,m)|2. (7)

In order to calculate x(n), the phase ϕz(k,m) of Sz(k,m)
is combined to the magnitude |Sx(k,m)|, such that

Sx(k,m) = |Sx(k,m)|ejϕz(k,m). (8)

3. Proposed Modifications
3.1. Perceptual measure

In order to asses the perceptual quality of a reverberant speech
signal, this work employs the QAreverb [2] measure Q, defined
as

Q = −T60 σ
2
r

Rγ
, (9)

where T60 is the reverberation time (defined as the period of
time required for the sound-pressure to decay 60 dB, which in
this work is estimated by Karjalainen’s algorithm [7]), σ2

r is
the room spectral variance (RSV) [8], and R is the direct-to-
reverberant energy ratio (DRR) [9], and γ = 0.3. In practice,
a higher T60 indicates a more lasting reverberation effect, the
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RSV is closely related to the coloration effect, and the DRR
provides some insight on the source-microphone relative posi-
tion. These three measures can be obtained directly from the
RIR, h(n), which is estimated from the deconvolution process
between the clean and reverberant speech signals.

In practice, the QAreverb measure can me seen as an exten-
sion of Allen’s score [10] by incorporating the DRR into its for-
mulation. TheQ score is mapped onto the 1−−5 mean opinion
score (MOS) scale through a third order polynomial (followed
by a first-order polynomial mapping for some bias adjustment),
as detailed in [2].

3.2. Reverberant speech database

The main database used in this work is called the new Brazilian-
Portuguese (NBP) database [2] which uses a Fs = 48-kHz sam-
pling frequency. In this database, 4 anechoic speech signals (2
by male speaker and 2 by female speaker) were used to generate
reverberant speech following three different frameworks:

(i) Artificial reverberation: This scenario is represented by
6 distinct artificially generated RIRs, where the early reflections
were modeled via the image method, and the late reverberation
used the feedback delay network method and a modified version
of Gardner’s method, for emulating the lower and higher rever-
beration times, respectively. The average T60 for the 6 RIRs are
given by {196, 292, 387, 469, 574, 664} ms.

(ii) Natural reverberation: This approach consists in 17 dif-
ferent RIRs obtained from the direct recordings of 4 different
types of rooms with several source-microphone distances for
each room, as detailed in [14]. The average T60 for each of the
4 rooms are in the range of {120, 230, 430, 780} ms.

(iii) Real reverberation: In this case, the degraded signals
were directly played/recorded in 7 real rooms and 4 different
source-microphone distances (except in the smaller room where
only 3 distances were considered), yielding a total of 27 RIRs
with average T60 of {140, 390, 570, 650, 700, 890, 920} ms.

As described in [2], the perceived quality of all 204 NBP
signals (4 anechoic, 24 artificial, 68 natural, and 108 real cases)
was assessed through an absolute category rate (ACR) MOS test
with 30 non-trained listeners for each signal. 10 additional sig-
nals covering the whole NBP reverberation range were used in
the initial part of the test to assist the listener in adjusting his/her
scoring scale. The scores of these 10 additional signals were
discarded later on without the listener’s knowledge. In the end,
outliers (scores outside the region of three standard deviations
around the mean score of each signal) were removed. Only 9,
all from different listeners and signals, out of a total of 6120
scores were removed in this procedure. The NBP database is
available upon request by e-mail to the authors.

The NBP database was divided into two sub-databases: the
training database, composed of 18 reverberant speech signals,
one for each environment (1 anechoic, 6 artificial RIRs, 4 nat-
ural rooms, and 7 real rooms). The training database is com-
posed of the remaining 182 reverberant speech signals from the
NBP database. Initially the parameters were optimized regard-
ing QMOS in the training database and then the test database is
used to validate the system performance.

3.3. Methodology

For a complete fine-tuning of the dereverberation algorithm,
three experiments were devised, as detailed below:

Experiment 1: In a first step, the optimization of the AIF
block parameters LP-filter length K and adaptation step µ, as
detailed in Sebsection 2.1, is performed with the SS block set

to its original configuration. Furthermore, a new convergence
criterion is considered to accelerate the entire adaptation pro-
cess [12].

Experiment 2: In a second experiment, following the SS
description provided in Subsection 2.2, the optimized parame-
ters are the scaling factor γ, the attenuation limit ε, the length of
the early reflections ρ, and the spread control a. In this scenario,
the AIF block is set as in the original algorithm design.

Experiment 3: In a final stage, the two AIF parameters (K
and µ), along the new convergence criterion, are jointly opti-
mized with the four SS parameters (γ, ε, ρ, and a) considered
in Experiment 2 above. The best performance settings are then
applied to the test database for validation of the overall experi-
mental procedure, as detailed below.

4. Experimental Results
4.1. Experiment 1

Since higher LP orders K tend to provide less estimation
residues, generating a more impulsive-like profile related to
the glottal pulses, this experiment considers the influence of K
in the perceived quality of the dereverberated speech signals,
along with the influence of the adaptation step size µ.

With the objective of improving the number of iterations for
the update of G, a new stop criterion was devised for the adap-
tation algorithm. For this matter, consider the average kurtosis
variation in time given by

J̄d(i) =

∣∣∣∑M̄
l=1 J̄(i− l)−

∑M̄
l=1 J̄(i− l + 1)

∣∣∣∣∣∣∑M̄
l=1 J̄(l)

∣∣∣ . (10)

By using a stop criterion of the form J̄d(i) = Jmax
d , with for

instance M̄ = 4, one is able to decrease the average number of
iterations significantly, without affecting the perceived quality
of the dereverberated speech signals [12].

The AIF optimization considered the parameter ranges
K = {10, 20, . . . , 100}, µ = {1, 2, . . . , 10} × 10−9, and
Jmax
d = {−∞,−100,−75,−50,−25}, which gives a total of

500 training setups. In this experiment the parameters of the
spectral subtraction block were kept as in [3]. The parameters
were analyzed considering the averageQm for allQMOS scores
within the 18-signal training dataset. The best mean score
Qm = 3.71 was obtained by using K = 40, µ = 4 × 10−9,
and Jmax

d = −25 dB, and the average number of iterations was
reduced from 500 to 50.

The 19 best {K,µ, Jmax
d } sets with respect to the average

Qm, along with the original set, were then selected for the joint
optimization stage implemented in Experiment 3.

4.2. Experiment 2

In this scenario, the optimization of the four SS parameters was
performed in two pair, while keeping the AIF parameters as set
in [3].

First, a joint search for the best values of γ and ε was done,
and the 14 {γ, ε} pairs with the best Qm scores, along with the
original {γ = 0.35, ε = 10−3} pair, were selected for the joint
{γ, ε, ρ, a} optimization.

Later, a joint search for the best values of ρ and a was per-
formed, and the 14 {ρ, a} pairs with the best Qm scores, along
with the original {ρ = 7, a = 5} pair, were selected for the
joint {γ, ε, ρ, a} optimization.
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Finally, all 15 {γ, ε} pairs were combined with the 15
{ρ, a} pairs previously chosen, totaling 225 {γ, ε, ρ, a} distinct
setups. The best perceptual score achieved in this experiment
wasQm=3.61 for the set {γ = 0.35, ε = 10−3, ρ = 7, a = 6}.

The 19 best sets {γ, ε, ρ, a} with the best Qm scores, along
with the original {γ = 0.35, ε = 10−3, ρ = 7, a = 5} set,
were then selected for the joint optimization procedure imple-
mented in Experiment 3.

4.3. Experiment 3

This scenario considers the joint AIF and SS optimization by
combining the best 20 parameter sets identified in each of the
Experiments 1 and 2 above, leading to a total of 400 distinct
setups. After testing all these 400 configurations, the best
perceptual performance Qm = 3.71 was achieved by the set
{K = 40, µ = 4 × 10−9, Jmax

d = −25 dB, γ = 0.35, ε =
10−3, ρ = 7, a = 6}, which corresponds to the same Qm per-
formance obtained at the AIF optimization stage. In order to
understand why the joint optimization improve upon the results
in Experiment 1, the QAreverb metric was broke down into its
three partial metrics, as detailed in Tables 1 and 2. From these
tables, one clearly notices how the joint optimization does not
improve significantly upon the AIF optimization in any aspect
whatsoever.

Table 1: Average performance of the individual reverberation
metrics for the training database in Experiment 3.

Quality Unprocessed Two-stage algorithm
metric database Original AIF SS Joint
Qm 3.46 3.46 3.71 3.58 3.71
T60 440 354 273 247 273
σ2
r 5.50 6.95 6.00 6.93 5.96
R 5.54 1.97 3.06 1.81 3.06

Table 2: Average performance of the individual reverberation
metrics for the test database in Experiment 3.

Quality Unprocessed Two-stage algorithm
metric database Original AIF SS Joint
Qm 3.36 3.42 3.52 3.43 3.52
T60 517 337 368 340 373
σ2
r 5.61 6.80 6.05 6.76 6.02
R 7.59 2.33 4.61 2.36 4.66

This conclusion can be associated to the fact that the AIF
stage is somehow degrading the signal in a manner that the SS
cannot compensate for. To confirm this assumption, the AIF
block was removed from the overall algorithm and the SS stage
was once again optimized, following the same strategy as above
(Experiment 2). The results for this new optimization round are
seen in Tables 3 and 4, for the training and testing datasets, re-
spectively. These new results indicate that the new algorithm,
which includes only the SS stage, is able to achieve better per-
ceptual scores (either through better individual metrics or with a
combined QAreverb score) compared to any previous algorithm
configuration, which was corroborated by informal subjective
tests. An additional advantage of the simplified algorithm is
that its processing time was further reduced in about 30%, by

completely eliminating the AIF stage, in comparison to the al-
ready improved configuration provided in Experiment 1.

Table 3: Average performance of the individual reverberation
metrics for the training database using modified algorithm.

Quality Unprocessed SS Only
metric database Original Modified
Qm 3.46 3.65 3.78

T60 [ms] 440 455 180
σ2
r 5.50 5.41 5.35
R 5.54 5.61 16.02

Table 4: Average performance of the individual reverberation
metrics for the test database using modified algorithm.

Quality Unprocessed SS Only
metric database Original Modified
Qm 3.36 3.53 3.63

T60 [ms] 517 490 394
σ2
r 5.61 5.70 5.67
R 7.59 6.12 9.00

5. Conclusion
This work proposes an enhancement strategy, based on per-
ceptual reverberation measures, for dereverberation algorithms.
The complete procedure was applied to the adaptive inverse fil-
ter and spectral subtraction blocks of a two-stage algorithm.
By doing so, several parameters of these two blocks could be
finely tuned following a perceptual perspective, leading to an
overall algorithm improvement on the chosen QAreverb scale.
The proposed strategy identified a significant algorithm modifi-
cation, which corresponded to the complete elimination of the
AIF stage, allowing a 96.7% reduction in the required process-
ing time. Such simplification also led to perceptual QAreverb
improvements in the ranges of 9% and 6%, for the training and
testing datasets, respectively, in comparison to the original al-
gorithm configuration.
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