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ABSTRACT

This paper addresses the problem of reducing the reverbera-
tion effect from speech signals, which is known as derever-
beration. The main idea is to modify a dereverberation algo-
rithm based on ideal channel selection (ICS) from an algo-
rithm with reference to a blind algorithm. The channel se-
lection technique performs a comparison between clean and
degraded speech signals to decide the channel selectivity and
a blind spectral subtraction technique (SS) was used in or-
der to estimate the clean speech for ICS. Thus, the combi-
nation of SS and ICS generated a blind dereverberation tech-
nique named proposed approach version 1, which overcame
the performance of the original ICS techniques in about 35%
of the reverberation quality assessment (Qm). Furthermore,
a different concept was adopted making the channel selection
threshold varies with input speech signal instead of having a
fixed value, leading to a slightly different dereverberation al-
gorithm called proposed approach version 2, which reached
Qm performance improvement of 38% compared to ICS.

Index Terms— Dereverberation, Channel selection, Per-
ceptual quality assessment.

1. INTRODUCTION

The reverberation effect can depreciate speech intelligi-
bility and quality, affecting mainly the performances of
speech/speaker recognition and hearing aids systems, and
thus requiring the use of speech enhancement techniques.

This paper is based on ideal channel selection (ICS) [1]
algorithm, which was designed to enhance speech signals de-
graded by reverberation and additive noise. The alleged ad-
vantage of this technique is that it does not need to perform
the room impulse response (RIR) inversion in order to obtain
a dereverberated speech signal, since RIRs of highly rever-
berant rooms have thousands of filter taps, making their in-
version computationally expensive and reduce the consonant
errors in intelligibity. The concept of the algorithm consists
in comparing the frequency bins (channels) ratio of the win-
dowed reverberant and clean speech signals, i.e., the signal-
to-reverberant ratio (SRR), with a threshold. If the channel
SRR is greater than the threshold, the degraded speech signal
channel energy sample is selected for the output signal, oth-
erwise it is set to zero. The aim of the threshold is to retain

the components originated from early reflections and discard
the components of late reverberation, due to the fact that the
first are known to improve and the latter causes deterioration
in speech intelligibility, since it smears the temporal envelope
the speech signal.

In order to emulate the clean speech to be applied in ICS
algorithm, the spectral subtraction (SS) block proposed in [2]
was used, generating the spectral subtracted speech signal,
which can be considered as an estimate of the clean speech
signal. The SS algorithm differs from the tradition SS tech-
niques, because the first aims to reduce the reverberation ef-
fect and the traditional ones are applied for noise reduction.

This paper is organized as follows: In Section 2, the orig-
inal SS [2] and ICS [1] algorithms are detailed, with focus
given on the steps to be changed in the proposed procedure;
Section 3 describes two blind dereverberation algorithms
propositions. One is based on the direct combination of SS
and ICS algorithms using a fixed threshold, while the other
uses a mapping function to relate the blind reverberation time
to the threshold to be used for a given speech signal according
to the reverberation quality assessment for the given speech
signal.; Section 4 describes the training and test databases
employed in this work, each one comprising 100 speech sig-
nals with distinct reverberation levels; Section 5 is divided
into two parts, where the first presents the procedures adopted
to generate the mapping function for the second proposed al-
gorithm, and the second shows the dereverberation techniques
performances for training and test databases, observing rever-
beration quality associated measures, as quality assessment
of reverberated speech Qm [4], reverberation time (T60) [6],
room spectral variance (σ2

r ) [7] and direct-to-reverberant en-
ergy ratio (R) [8, 9]; Finally, conclusions concerning the
relative performances increase for the dereverberation al-
gorithms and the efficiency of the proposed approaches are
addressed in Section 6.

2. ALGORITHMS

2.1. Spectral subtraction

The spectral subtraction (SS) algorithm is proposed in [2],
which describes a technique for reducing the effects of late
reverberation based on an adaptive approach presented in [3].



The SS algorithm considered in this work is exclusively rever-
beration reduction, differently from the the tradition SS algo-
rithms, which are intended to reduce the background noise.

Let Sy(k,m) = |Sy(k,m)|ejϕy(k,m) be the m-th frame
of the Short-time Fourier transform (STFT) of the degraded
speech signal y(n). Also let ρ be the length in frames of the
early reflection, commonly considered to be around 50 ms and
γ be the scaling factor that establishes the relative strength
of the late impulse components after the inverse filtering and
w(m) be an asymmetrical smoothing window based on the
Rayleigh distribution.

Following these definitions, the late-reverberation power
spectrum can be modeled by the convolution

|Sl(k,m)|2 = γw(m− ρ) ∗ |Sy(k,m)|2, (1)

and the power spectrum of the early impulse components is
given by

|Ss(k,m)|2 = max

[

1−
|Sl(k,m)|2

|Sy(k,m)|2
, ǫ

]

, (2)

where the auxiliary parameter ǫ keeps |Ss(k,m)|2 from be-
coming negative or too close to zero. Finally, the magnitude
spectrum of the SS estimate x̂(n) of the clean speech signal
x(n) can be determined as

|Sx̂(k,m)| =
√

|Sy(k,m)|2 × |Ss(k,m)|2, (3)

and the spectrum of x̂(n) is estimated as

Sx̂(k,m) = |Sx̂(k,m)|ejϕy(k,m). (4)

2.2. Ideal channel selection

The ideal channel selection algorithm was proposed in [1] and
consists in applying the clean and degraded speech signals
into a kind of time-frequency mask to reduce the effects of
reverberation and noise. Initially, the STFT representations
Sx(k,m) and Sy(k,m) of x(n) and y(n) are obtained using
a Hamming window of 20 ms with 10 ms overlap with K
channels. Channels are all bins corresponding to the digital
frequencies in the interval [0, π) rad/sample. Then a proce-
dure to select or discard the spectral magnitude of Sy(k,m)
based on speech-to-reverberant ratio (SRR) is adopted, where

the SRR is given by SRRk,m = 10 log10

(

Sx(k,m)
Sy(k,m)

)

. If

SRRk,m is greater than a threshold τ , then the spectral mag-
nitude |Sy(k,m)| is selected, otherwise it is discarded. Orig-
inally, τ = −8 dB is appropriated to noise plus reverbera-
tion scenario. Finally, the frequency domain representation
is converted to time domain by using Inverse STFT (ISTFT),
resulting in the ICS estimate x̃(n) of the clean speech signal.

3. PROPOSED ALGORITHMS

The first proposed algorithm entitled proposed approach ver-
sion 1 combines both SS and ICS algorithms as depicted
in Figure 1. The degraded speech signal y(n) is used as input

for the SS algorithm, which generates as output an estimate
x̂(n) of the clean speech. This estimate of the clean speech is
then used together with the degraded speech signal as inputs
for the ICS algorithm, resulting in the SS-ICS estimate x̃(n)
of the clean speech signal.
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Fig. 1. Proposed algorithm - version 1.

The second proposed algorithm entitled proposed ap-
proach version 2, shown in Figure 2, extends the proposed
approach version 1 by applying an estimation technique to
adapt the threshold value of the ICS algorithm, depending on
the reverberation time of the degraded speech. The blind re-
verberation time T b

60 is estimated using only the input speech
y(n) through the use of the algorithm described in [5].

The estimated T b
60 is then applied to a piecewise cubic

Hermite interpolating polynomial (PCHIP) mapping, which
maps each two points of the training data by a cubic hermite
polynomial, associating the reverberation time to the most ap-
propriated threshold Thr, in order to maximize the quality of
the dereverberated speech x̃(n).

4. DATABASE

In this work we employed the so-called New Brazilian Por-
tuguese (NBP) database [2, 4, 5], which composed of three
reverberation scenarios:

• Artificial reverberation: This approach employed 6
artificially generated RIRs, where the early reflec-
tions were modeled via the image method, and the
late reverberation used the feedback delay network
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Fig. 2. Proposed algorithm - version 2.

method and a modified version of Gardner’s method,
for emulating the lower and higher reverberation times,
respectively. The estimated RTs for each RIR were
{200, 290, 390, 470, 570, 660} ms.

• Natural reverberation: This approach used the RIRs de-
termined from the direct recordings in 4 different types
of rooms, with several source-microphone distances for
each room, as detailed in [10], making a total of 17
RIRs. The average measured reverberation time for the
4 rooms were {120, 230, 430, 780} ms.

• Real reverberation: In this case, the degraded signals
were directly played/recorded in the 7 distinct rooms,
employing at least 3 different source-microphone dis-
tances, yielding a total of 27 RIRs with average RTs in
the range of {140, 390, 570, 650, 700, 890, 920} ms.

To generate the complete NBP database, we employed 4 ane-
choic speech signals (2 from a male speaker and 2 from a
female speaker), containing two short Brazilian-Portuguese
sentences separated by approximately 1.7 s, giving an 8.4-s
average duration for the entire database. These anechoic sig-
nals were used to generate 24 speech signals with artificial

reverberation, 68 with real reverberation, and 108 with nat-
ural reverberation effects, making a total of 200 speech sig-
nals, all of them sampled at Fs = 48 kHz. The perceived
quality of all speech signals was assessed through an abso-
lute category rate (ACR) MOS test performed by 30 listeners.
The whole database was sorted by the subjective MOS or-
der. The training and test databases were separated using odd
and even indexes of the sorted speech signals, respectively,
resulting in 2 sub-databases of 100 reverberant speech signals
each. The training database A1 was used for parameter op-
timization, and the test database A2 was used to validate the
resulting system’s performance, only for the proposed algo-
rithm version 2 described in Section 3.

5. EXPERIMENTAL RESULTS

The experimental results is divided into two parts, where the
first considers the mapping block of Section 3 and the second
performs a comparison of all related techniques against the
proposed approaches analyzing appropriated metrics associ-
ated to reverberation quality.

5.1. Mapping T b
60 to Thr

The only technique that requires a training stage in this work
is the proposed algorithm version 2 due to the mapping from
blind estimated reverberation time T b

60 to threshold Thr re-
quired to decide the use of Sy(k,m) at the recovered (dere-
verberated) speech signal x̃(n).

Initially a range of thresholds T = [−16,−15, . . . , 16] dB
were tested with each input signal y(n). The most appropri-
ated threshold for each signal was chosen as to maximize the
perceptual quality of speech and it was used as a mapping
reference.
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Fig. 3. Training PCHIP mapping from T b
60 to Thr using

database A1. The solid line is the resulting mapping and the
dashed line is the reference threshold.

Applying database A1 the PCHIP mapping functions
were generated and tested using A2. The Figure 3 presents
the results for the training PCHIP mapping using database
A1, and Figure 4 presents the obtained mapping functions
applied to A2. The root mean squared errors (RMSEs) are
2.51 and 7.86 dB, respectively to A1 and A2.
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Fig. 4. Testing PCHIP mapping from T b
60 to Thr using

database A2. The solid line is the resulting mapping and the
dashed line is the reference threshold.

5.2. Comparative analysis

This Section presents the evaluation of the dereverberation
techniques under the scope of some reverberation quality
measures. The applied methods which use the reference
(clean) and degraded speech signals for estimating the quality
assessment are the perceptual quality of reverberated speech
Qm [4], reverberation time T60 [6], room spectral variance
σ2
r [7] and direct-to-reverberant energy ratio R [8, 9].

Table 1. Mean performance of the dereverberation algorithms
for database A1.

Quality Unprocessed Dereverberation Algorithms
metric database ICS SS PI PII

Qm 3.4 2.6 3.6 3.6 3.8
T60 526 1237 379 416 294

σ2
r 5.5 5.0 5.7 5.4 5.9
R 7.6 1.6 7.4 7.3 8.6

Tables 1 and 2 consist of the mentioned reverbera-
tion quality methods assessing four dereverberation algo-
rithms, ideal channel selection (ICS) [1], spectral subtrac-
tion (SS) [2], proposed algorithms version 1 (PI) and 2
(PII), observed in the scenarios of the training (A1) and
test (A2) databases, respectively. Furthermore, the baseline
scores were established on the evaluation of the unprocessed
database. Although only PII requires a training dataset, all
techniques were equally evaluated on all databases for the
sake of a fair comparative analysis.

Table 2. Mean performance of the dereverberation algorithms
for database A2.

Quality Unprocessed Dereverberation Algorithms
metric database ICS SS PI PII

Qm 3.4 2.8 3.6 3.5 3.8
T60 509 1027 375 411 251

σ2
r 5.7 5.1 5.8 5.5 6.1
R 7.6 2.0 7.4 7.6 7.4

Consistently for all tables, the measures Qm and R show
a certain amount of increase comparing the proposed ap-
proaches with ICS and SS algorithms, and the measures T60

and σ2
r present the opposite behavior, i.e., reduction in value.

The only technique that does not show any improvement
compared to the unprocessed data scores is the ICS algo-
rithm, which despite being designed to address the combined
situation of reverberation and noise, it would be expected to
work efficiently in just reverberation scenario, as stated in [1].
The ICS weak performance could be explained by the fixed
and aggressive threshold τ for the dataset in analysis [1].

Observing Table 1, the algorithm PII achieved relative im-
provements in Qm of about 12%, 46%, 6% and 6% with re-
spect to the unprocessed database, ICS, SS and PI algorithms,
respectively. For Table 2 the improvements were about 12%,
36%, 6% and 9%.

The algorithm PI introduces a blind dereverberation tech-
nique based on ICS algorithm, which is expected to reduce
the consonant confusion errors, as stated in [1]. Although PI
algorithm could reach higher performance when compared to
unprocessed data and ICS, it could not overcome the SS al-
gorithm performance reaching an equivalent performance for
database A1 (Table 1) and a slightly worse performance for
database A2 (Table 2), due to the fact that it uses the same
fixed threshold τ for any input signal y(n), motivating and
confirming the benefits of using a threshold Thr dependent
on the reverberation characteristics of y(n) implemented in
PII algorithm.

The algorithm PII has also shown remarkable relative per-
formances concerning the T60 for both Tables 1 and 2 reach-
ing about 22% and 33% of improvements, respectively, when
compared to SS algorithm, which reached the second best T60

perfomances.

6. CONCLUSION

This work proposed two blind dereverberation algorithms
based on ideal channel selection [1], which originally re-
quires the clean and degraded speech signals to apply the
technique. A blind dereverberation algorithm means that it
depends only on the degraded speech signal, having no need
of the reference signal.

The first proposed technique combined the ICS with
the spectral subtraction [2], making the spectral subtracted
speech signal replaces the clean speech in the original ICS
framework. The second proposed technique was devised
using the structure as the first one, except that threshold for
selecting the channels is not fixed anymore, and could vary
with the algorithm input signal. The first technique intro-
duced the blind approach based on ICS and led the second
technique to the implementation of a threshold dependent on
the input signal characteristic approach.

The two main contributions of this work were: 1) the
modification on ICS algorithm making it dependent only the
degraded speech and increasing the dereverberation effective-
ness, and 2) the introduction of a rationale to make a rever-
beration amount variable channel selection threshold.

The effectiveness of the proposed approach PII when
compared to the unprocessed data and ICS algorithm reaches
approximately 12% and 36% for test database A2.
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