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Abstract—This work describes a complete statistical modeling
of the average channel gain in dB (ACGdB) and the root mean
squared delay spread (RMS-DS) for power line communication
(PLC) systems. The PLC channel features are estimated from
148,037 channel frequency responses measured in 7 typical dif-
ferent places in an urban area in Brazil. Two frequency bands are
considered: from 1.7 up to 30 MHz and from 1.7 up to 100 MHz.
The resulting datasets for ACGdB and RMS-DS were fitted to well
known continuous distributions, including symmetric (Logistic
and Normal) and asymmetric (Exponential, Gamma, Inverse
Gaussian, Loglogistic, Lognormal, Nakagami, Rayleigh, Rician,
Skew-normal, t-Student and Weibull) cases. The best distribution
fitted to the considered dataset is indicated by the log-likelihood
value and three distinct information criteria. The achieved results
revealed that the ACGdB is better modeled by the Skew-normal
and the Nakagami distributions for the frequency bands from 1.7
up to 30 MHz and 100 MHz, respectively, whereas the RMS-DS
is little bit better modeled by the Gamma distribution, then by
the Lognormal distribution, in both frequency bands considered.

Keywords—Statistical modeling, delay spread, average channel
gain, maximum likelihood.

I. INTRODUCTION

Power line communication (PLC) is the technology that
makes use of the existing and ubiquitous electrical infras-
tructure to provide data communication. This technology has
received considerable attention due to its reduced installation
costs, as most needed infrastructure (power line cables) is
already installed. On the other hand, since electric power
grids were not initially designed for data communications
purposes, they represent a challenging transmission medium.
Therefore, the success of PLC systems requires a thorough
study of the electric power grids main features that affect data
communication.

Among the features of interest the average channel gain
(ACG) and the root mean squared delay spread (RMS-DS)
stand out, and their normality/lognormality is discussed in
a few works on the related literature. In [1], for instance,
measurements of the PLC channel in an urban and suburban
areas in US are presented, considering a frequency band up to
30 MHz. In [2], normality tests based on 60 PLC channel
estimates taken in six different homes did not reject the
null hypothesis in which the ACGdB (ACG in dB) and the
RMS-DS were considered normal and lognormal variables,

respectively. The results of 200 PLC channels measured in 25
different premises in Spain are reported in [3], using a 30 MHz
frequency band. In that work, the normality assumption for
ACGdB was rejected by all performed tests, whereas the
lognormality assumption was validated for the delay spread
metric. Finally, in Italy, a set of 1266 channels were measured
considering a frequency band up to 100 MHz [4], and the
normality of ACGdB was not strictly confirmed, whereas the
RMS-DS lognormality was firmly established.

In this work, the statistical modeling of the ACGdB and
RMS-DS features is performed using the PLC channel es-
timates from 7 typical different places in an urban area in
Brazil. Two frequency bands are considered: Band A (from
1.7 up to 30 MHz) and Band B (from 1.7 up to 100 MHz).
The resulting datasets are then modeled by several statistical
distributions, including symmetric (Logistic and Normal) and
asymmetric (Exponential, Gamma, Inverse Gaussian, Loglo-
gistic, Lognormal, Nakagami, Rayleigh, Rician, Skew-normal,
t-Student and Weibull) distributions. The best distribution is
evaluated by the associated log-likelihood value and three
information criteria, namely the Akaike information criterion
(AIC), Bayesian information criterion (BIC) and the efficient
determination criterion (EDC). Results indicate that, in Band A
and Band B, the ACGdB feature presents Skew-normal and
Nakagami distributions, respectively, whereas the RMS-DS is
better fitted in both frequency bands by a Gamma distribution,
having the Lognormal distribution quite similar fitting.

The remainder of this work is organized as follows: Sec-
tion II details the PLC channel measurements employed in
the subsequent analyses and Section III presents the PLC
parameters (ACBdB and RMS-DS) to be modeled. Section IV
discusses the formal concepts behind the maximum likelihood
estimation process. Section V presents the modeling results
for the ACBdB and RMS-DS features, including a comparison
to other analyses found in the related literature. Finally, Sec-
tion VI closes the paper summarizing its main contributions.

II. MEASUREMENT CAMPAIGN

A measurement campaign was performed in seven different
typical sites in an urban area in Brazil, as detailed in Table I.
The Brazilian in-home PLC channels were considered and
analyzed in two frequency bands: Band A (from 1.7 up to
30 MHz) and Band B (from 1.7 up to 100 MHz).
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Table I: Main features of the measured places.

Construction type Age (years) Constructed area (m2)

House 1 30 78
House 2 10 69

Apartment 1 9 54
Apartment 2 9 42
Apartment 3 18 65
Apartment 4 3 62
Apartment 5 2 54

In the entire campaign, 245 different outlet pairs were
employed, providing a total of 148,037 channel frequency re-
sponse (CFR) estimates, with an average of 604 CFR estimates
for each electric circuit configuration. Each CFR was obtained
by using the channel-estimation methodology fully described
in [5].

III. PARAMETERS UNDER INVESTIGATION

This section presents the formal definitions of the ACG
and RMS-DS parameters of PLC systems.

A. Average channel gain

The ACGdB of a PLC channel is expressed by

ACGdB = 10 log10

(

1

B

∫

B

|H(f)|df

)

, (1)

where H(f) is the channel frequency response at the frequency
f and B is the frequency bandwidth. The average channel
attenuation (ACA), given by ACA = −ACGdB , is adopted
in this contribution, as some of the statistical distributions
considered here cannot assume negative values.

B. Root mean squared delay spread

The RMS-DS denotes the distribution of the transmitted
power over the various paths in a multipath environment, and
can be defined as the square root of the second central moment
of a power delay profile. For a channel impulse response (CIR)
h(t), the power delay profile can be calculated with

P (σ) =
|h(t)|2

∫∞
−∞ |h(t)|2dt

. (2)

The resulting RMS-DS is given by

στ =

∫

(σ − σe − σA)
2
P (σ)dσ, (3)

where σA corresponds to the time delay of the first transmitted
signal at the receiver and σe is the mean excess delay given
by σe =

∫

(σ − σA)P (σ)dσ.

IV. MAXIMUM LIKELIHOOD ESTIMATION

Let X1, X2, ..., Xn be a random sample of probability
density function (pdf) f(x|θ), where θ = [θ1, ..., θK ]T repre-
sents the set of k unknown parameters. Thus, the likelihood
function can be defined as [6]

L(θ) =

n
∏

i=1

f(xi|θ1, ..., θK), (4)

and the associated log-likelihood function is given by

l(θ) =

n
∑

i=1

log(f(xi|θ1, ..., θK)). (5)

The maximum likelihood estimate (MLE), represented by

the vector θ̂, is obtained through

θ̂ = argmax
θ

l(θ). (6)

Such optimization problem can be easily solved for some dis-
tributions, such as the normal distribution. Other distributions,
however, such as, for instance, the skew-normal and gamma
distributions, do not allow an analytic solution, and require a
numerical procedure to determine the corresponding MLE, as
detailed in [7].

V. STATISTICAL ANALYSES

The statistical characterization of the ACA feature, in-
cluding its maximum, minimum, mean and standard deviation
values from the 148,037 CFR estimates, along with the 50th

and 90th percentiles is presented in Table II. The percentile
reflects a value below which a given percentage of observations
fall.

As can be noted, the Band A ACA values present max-
imum, mean and minimum values of 51.0 dB, 23.3 dB and
9.1 dB, respectively. Also, in 90% of the cases, the attenuation
was below 34.7 dB. Considering the same band, the PLC
channels estimated in US [8], however, presented a mean ACA
value of 48.9 dB, which is more than 20 dB higher than the
estimated value for Brazilian in-home PLC channels.

Using Band B, our measurements resulted in maximum,
mean and minimum ACA values equal to 55.3 dB, 30.2 dB
and 13.6 dB, respectively. In this case, comparisons with PLC
channels in Italy [4] show that the mean ACA values in
Brazilian PLC channels are around 5 dB lower.

Regarding symmetry, a significant difference between the
mean and the median (50th percentile) values indicate that
the Band A ACA can be modeled by an asymmetric statistical
distribution. On the other hand, the Band B ACA shall be better
fitted by a symmetric distribution, due to the small difference
between its mean and median values.

Table II: ACA statistical characterization for the measured
Brazilian in-home PLC channels.

Average channel attenuation (dB)

Band A Band B

Maximum 51.089 55.269
Minimum 9.145 13.557

Mean 23.281 30.211
Standard Deviation 8.609 9.158

50th percentile 22.767 30.822

90th percentile 34.693 39.649

Regarding the RMS-DS, the estimated statistical parame-
ters are summarized in Table III.

In this case, for the Band A, the mean RMS-DS value was
around 0.15 µs, which is much lower than the corresponding
US value of 0.53 µs reported in [8]. Also, while the RMS-DS
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is higher than 0.14 µs in 50% of the in-home PLC channels in
Brazil, this number rises to 0.47 µs for the same percentage
in US.

For Band B, the mean RMS-DS value was 0.13 µs. In
comparison to PLC channels in France [9], Brazilian in-home
PLC channels presented lower RMS-DS values. In fact, while
the RMS-DS can reach values of 0.60 µs in France, in Brazil
this value remains below 0.20 µs in 90% of the cases.

Table III: RMS-DS for the measured Brazilian in-home PLC
channels.

RMS-DS (µs)

Band A Band B

Maximum 0.493 0.465
Minimum 0.039 0.029

Mean 0.148 0.133
Std 0.064 0.064

50th percentile 0.140 0.127

90th percentile 0.227 0.204

A. Statistical Modeling

An exploratory analysis was performed in the ACA and
RMS-DS datasets for the Brazilian in-home PLC channels.
In this case, a statistical modeling for the ACA and RMS-
DS features was performed considering several symmetric
and asymmetric distributions, chosen according to the general
behavior observed in each dataset. The considered symmetric
distributions are the Logistic and the Normal, while the asym-
metric ones are the Exponential, Gamma, Inverse Gaussian,
Loglogistic, Lognormal, Nakagami, Rayleigh, Rician, Skew-
normal, t-Student and Weibull.

The suitability of the fitting between the dataset and the
statistical distributions was evaluated in terms of the log-
likelihood function, as given in Eq. (5). Also, three information
criteria (AIC, BIC and EDC) were employed to evaluate the
proposed fitting, penalizing the number of parameters in each
distribution to avoid data overfitting. These criteria have the
general form of [10]

−2l(θ̂) +Kcn, (7)

where K is the number of model parameters and cn is the
penalty term for the associated criterion as listed in Table IV,
where n is the length of the data set. In contrary to the log-
likelihood function, a lower information criterion value, as
given in Eq. (7), corresponds to a better fitting between the
dataset and the considered distribution.

Table IV: Penalty term cn of different information-based model
evaluation criteria: AIC, BIC and EDC.

Criterium cn
AIC 2

BIC log(n)
EDC 0.2

√
n

The modeling parameters for the best fitted and the normal
distributions for the ACA for both frequency bandwidths
considered in this work are summarized in Table V.

As depicted in Fig. 1a, the attained results revealed that in
Band A the ACA for Brazilian in-home PLC channels is better

fitted, according to all evaluation criteria, by the Skew-normal
distribution, even though this distribution has three parameters.
For the same frequency range, the US PLC channels presented
a normal ACA distribution, as detailed in [1]. For the sake of
comparison, the best normal distribution for the Band A ACA
in Brazil is also shown in Fig. 1a.

For Band B, the best ACA fit corresponds to the Nakagami
distribution, as seen in Fig. 1b, although the normal distribu-
tion, also depicted in this figure, yielded quite similar values
for the log-likelihood function and all adopted information
criteria, as given in Table V. In [4], the best normal fit for
the ACA related to PLC channels in Italy has the mean
and standard deviation, (µ, σ), equal to (35.412, 10.521) dB,
against (30.211, 9.158) dB for the best normal fit for the
ACA Brazilian case. These results reinforce the fact that PLC
channels in Italy suffer from an additional 5 dB attenuation in
comparison to their Brazilian counterparts.
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Figure 1: ACA distribution fitting: (a) Band A; (b) Band B.

With respect to the RMS-DS modeling, the histogram de-
picted in Fig. 2 shows a clear asymmetrical nature. In fact, the
analysis of the RMS-DS for Brazilian in-home PLC channels
revealed that this PLC channel feature is better modeled by
a Gamma distribution, for both considered bandwidths. This
result is different of those reported in [1], for US in-home
PLC channels and for the frequency Band A, and in [4],
for in-home PLC channels in Italy for frequency Band B, in
which the RMS-DS was considered log-normally distributed.
On the other hand, the results achieved by fitting the RMS-
DS of Brazilian in-home PLC channels with the log-normal
distribution are not so distant to those obtained for the Gamma
distribution, as depicted in Fig. 2 and detailed in Table VI.
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Table V: MLE results for the ACA statistical distribution fitting (SE are the estimated standard errors).

ACA for Band A

Distribution Parameter Estimate SE Log-likelihood AIC BIC EDC

µ 22.7062 0.0124 −2.3359 104 4.6726 104 4.6731 104 4.6768 104

Skew-normal σ 9.4122 0.0081
γ 0.9625 0.0015

Normal µ 23.2804 0.0112 −2.3606 104 4.7215 104 4.7219 104 4.7244 104

σ 8.6094 0.0056

ACA for Band B

Distribution Parameter Estimate SE Log-likelihood AIC BIC EDC

Nakagami µ 2.8123 0.0021 −2.3962 104 4.7928 104 4.7931 104 4.7956 104

ω 996.5721 53.4341

Normal µ 30.2112 0.0127 −2.4014 104 4.8032 104 4.8035 104 4.8060 104

σ 9.1581 0.0063

Table VI: MLE results for the RMS-DS statistical distribution fitting (SE are the estimated standard errors).

RMS-DS for Band A

Distribution Parameter Estimate SE Log-likelihood AIC BIC EDC

Gamma a 5.3806 0.0083 9.2350 103 −1.8466 104 −1.8462 104 −1.8437 104

b 0.0275 0.0002

Lognormal µ −2.1459 0.4191 10−4 9.0471 103 −1.8090 104 −1.8087 104 −1.8062 104

σ 0.5263 0.2096 10−4

RMS-DS for Band B

Distribution Parameter Estimate SE Log-likelihood AIC BIC EDC

Gamma a 4.1178 0.0048 9.2151 103 −1.8426 104 −1.8423 104 −1.8398 104

b 0.0322 0.0001

Lognormal µ −2.0058 0.3044 10−4 9.1779 103 −1.8352 104 −1.8348 104 −1.8323 104

σ 0.4485 0.1522 10−4
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Figure 2: RMS-DS distribution fitting: (a) Band A; (b) Band B.

VI. CONCLUSION

This work presented statistical models for the average
channel attenuation (ACA) and the root mean squared value for
the delay spread of measured in-home PLC channels in Brazil.

Two different frequency bands were considered (Band A: from
1.7 up to 30 MHz; Band B: from 1.7 up to 100 MHz),
allowing direct comparisons with several works presented in
the literature. The provided analyses revealed that for Bands A
and B the ACA can be better modeled by the skew-normal and
the Nakagami distributions, respectively. This result is different
from those reported for in-home PLC channels in US and in
Italy, where the ACA was considered normally distributed.
The results for the RMS-DS revealed that such PLC channel
feature can be better modeled by a Gamma distribution for
both frequency bands. Although this result is different to
those reported for in-home PLC channels in US and in Italy,
where the RMS-DS is considered lognormally distributed,
the evaluation metrics (log-likelihood function, AIC, BIC and
EDC) for the Gamma and the lognormal distributions were
quite similar. Future works will be performed in order to
determine statistical models for other PLC channel features
such as the coherence time and the coherence bandwidth.
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