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Abstract—The use of a receiving array of antennas
allows the system to localize multiple sources. This estima-
tion is sometimes simplified to a direction-of-arrival (DoA)
estimation. The covariance-based (CB)-DoA algorithm is a
lower complexity alternative to the ESPRIT algorithm, and
yet achieves similar mean-squared error (MSE) with the
same geometrical constraints. This article proposes a lower
complexity CB-DoA algorithm. In the proposed algorithm,
the eigenvector decomposition (EVD) of a non-Hermitian
matrix is substituted by two lower complexity Hermitian
EVDs. The replacement of EVDs does not imply MSE
degradation. Discussions on exploiting the independent
processing of the new EVDs are also provided.

Keywords—direction-of-arrival estimation, ESPRIT, an-
tenna array

I. INTRODUCTION

The advantages of using multiple receiving antennas
in wireless communications are well-known [1] [2]. The
increase in the system capacity allows the support for
a greater number of users. The use of an array of
receiving antennas also provides the ability to spatially
localize the sources, which is important for the design
of beamforming filters [2].

In some applications, the exact localization of the
source is not necessary. Then, the problem may be
simplified to the discovery of the direction where the
source lies. This is generally addressed as the direction-
of-arrival (DoA) estimation problem.

The DoA problem was originally treated by either a
maximum likelihood (ML) estimator or non-parametric
wave estimators [2]. Early developments in the area led
to the development of the Spectral MUSIC (multiple
signal classification) [3] and the ESPRIT (estimation
of parameters via rotational invariance techniques) [4]
algorithms. Some algorithms related to Spectral MUSIC
or ESPRIT became somewhat dominant in the 1-D (one
dimensional) DoA estimation using linear arrays.

In the past two decades, research in DoA estimation
became diverse and vast. The use of either planar or 3-D
arrays has added new degrees of freedom in the design
of algorithms [5]. The incorporation of iterative and
adaptive approaches reduced the complexity of families

of old algorithms, such as the classical ML [6]. The use
of linear algebra tools also produced lower complexity
algorithms by the use of reduced-rank techniques [7].

Some recent developments, for instance the CB-
DoA [8] [9] algorithm, followed another path. CB-
DoA is a lower complexity alternative to ESPRIT while
requiring the same geometrical constraints.

This article proposes reducing even further the
computational complexity of CB-DoA. The proposed
algorithm replaces the EVD (eigenvector decomposi-
tion) of a non-Hermitian matrix by two Hermitian
EVDs. Although the number of EVD operations in-
creases, the overall computational complexity is reduced
due to the comparatively lower cost of the Hermitian
EVD. The proposed algorithm receives the denomination
Hermitian-decomposition CB-DoA (HD-CB-DoA).

Section II describes the scenario and the basic math-
ematical modeling of the DoA estimation problem. Sec-
tion III presents the proposed HD-CB-DoA algorithm.
In section IV, the computational complexity of HD-
CB-DoA is compared in relation to two benchmark
algorithms, ESPRIT [4] and CB-DoA [8] [9]. Besides
that, the advantages provided by the independence of
the computation of the new EVDs are also discussed.
Section V evaluates the mean-square error performance
of the proposed as well as the two aforementioned
benchmark algorithms. Section VI presents the conclu-
sions of the article.

II. DOA ESTIMATION

Consider a scenario where there are multiple sources
transmitting narrowband signals, i.e. cisoids (complex
sinusoids) with the same frequency. In the far field of
the sources, there is a receiving linear array, which is
co-planar to the sources. The propagation medium is
assumed to be isotropic, without reflections and the
transmitting antennas are omnidirectional on the plane
of the receiving array. By using those hypotheses, the
source localization is simplified to a direction finding
problem, i.e. a direction-of-arrival (DoA) estimation [2].
For co-planar sources and linear receiving array, the one
dimensional DoA is mapped into discovering the angle
θ represented in Fig. 1.
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Fig. 1. Linear receiving array with 6 antennas. The geometry presents
translational invariance constraints [4].

Consider a receiving linear array as depicted in
Fig. 1. In order to apply DoA estimation algorithms
based on rotational invariance subspaces, the receiving
array must obey some geometrical constraints. It is
required that the receiving array can be divided in two
sub-arrays and there is a constant displacement vector δ
with initial point in antennas belonging to the first sub-
array and the terminal point in antennas belonging to the
second sub-array. In the array depicted in Fig. 1, the first
sub-array contains the even-numbered antennas, and the
second contains the odd-numbered antennas.

A. System Modeling

In the scenario described above, consider that there
are M sources, each one transmitting cisoid sm(t),m ∈
Z, 0 ≤ m < M . The mixture of signals propagates
through the wireless medium. The signal wavefront
reaches the N antennas of the receiving array under the
DoA angle θ, as shown in Fig. 1.

Consider the signal acquired by the ith antenna and
sampled at t = kT , where k is a non-negative integer
and T is the sampling period. Then using the discrete
time k, one has that:

xi(k) =

M−1
∑

m=0

sm(k− τk(θi))ai(θm)+ni(k), 0 ≤ i < N

(1)
where τk(θi) represents a propagation delay of the
wavefront, θm is the DoA associated to the mth source,
ai(θm) is the gain of the ith antenna for the direction
of the mth source and ni(k) is the sampled AWGN
(additive white Gaussian noise) acquired by the ith

antenna. Received signals xi(k), i ∈ Z, 0 ≤ i < N
are supposed to be zero-mean signals.

The system may be represented by a vectorial
modeling. Consider vector x(k) containing the N re-
ceived, acquired and sampled signal at the N receiv-
ing antennas at discrete time k. Similarly, n(k) is
defined by the sampled noise impinging on the N
receiving antennas. Vector s(k) is defined as s(k) =

[s0(k − τ0(θi)) . . . sM−1(k − τM−1(θi))]
T

. Finally,

N×M -matrix A contains ai(θm) at its ith line and mth

column. The system is then modeled as:

x(k) = As(k) + n(k). (2)

B. Effect of the Geometrical Constraints

The geometrical constraints on the receiving array,
represented in Fig. 1, generate a redundancy in the

description of the received signals at both antennas of
a doublet. Consider signals x0(k) and x1(k) acquired
and sampled by antennas 0 and 1 in Fig. 1, respectively.
There is a relation between x0(k) and x1(k) since the
displacement vector δ is known:

x1(k) =

M−1
∑

m=0

sm(k − τk(θi))a1(θm) + n1(k)

=
M−1
∑

m=0

sm(k − τk(θi))e
jωδ sin θ/ca0(θm) + n1(k), (3)

where j =
√
−1, ω = 2πf is the angular central fre-

quency used and δ = ‖δ‖2, for the constant displacement
vector δ, shown in Fig. 1. The term inside the sum in
Eq. (3) closely resembles the similar term in Eq. (1)
with i = 0, except for a complex exponential, caused by
a phase difference on the received wave on the antennas
of the array. Consider xa(k) as the sub-vector of x(k)
containing the samples belonging to the antennas which
are the initial points of the doublets, whereas xb(k) is the
sub-vector of x(k) contains samples from the terminal
points of the doublets. Vector xa(k) may be defined
using a P × N, (N/2) ≤ P < N selection matrix Ja,
which is a shortened N ×N identity, containing the ith

line of the identity if and only if xi(k) is acquired by
an antenna that is an initial point of a doublet. Then,
xa(k) = Jax(k). Analogously, the selection matrix Jb
is defined for data acquired by the terminal point of a
doublet. Then, a new model is built for the system:

xa(k) = Jax(k) = Aas(k) + na(k), (4)

xb(k) = Jbx(k) = AaΦs(k) + nb(k), (5)

where Aa = JaA, Ab = JbA, na(k) = Jan(k) and
nb(k) = Jbn(k). Diagonal matrix Φ presents the phase
difference φm = exp(jωδ sin θm/c) at its mth diagonal
element. Then, in order to estimate the mth DoA θm,

θ̂m = arcsin

(

c ln(φm)

jωδ

)

. (6)

The CB-DoA algorithm [8] uses the EVD of the
autocovariance R00 = E[xa(k)x

H
a (k)], which is an

Hermitian matrix, and the EVD of the crosscovariance
R01 = E[xa(k)x

H
b (k)], which is non-Hermitian. The

EVD of non-Hermitian matrices presents higher com-
putationally complexity than Hermitian EVDs [10]. In
Section III, the proposed HD-CB-DoA is presented as
an alternative, which uses only Hermitian EVDs.

III. PROPOSED ALGORITHM

The proposed HD-CB-DoA performs several of the
operations conducted in the CB-DoA algorithm [8].
First, an EVD is executed on the Hermitian autocovari-
ance matrix R00. The P ×M matrix Us containing the
signal eigenvectors [4] in its columns and the M × M
diagonal matrix Σs containing the square roots of the
signal eigenvalues are generated.

Consider now the auxiliary matrix V given by

V = (Σs)
−1

U
H
s R01Us((Σs)

−1)H . (7)
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Fig. 2. Block diagram for representing operations of the proposed
HD-CB-DoA algorithm. Independence of data verified on the vertical
dataflux is discussed in Subsection IV-A.

In the CB-DoA algorithm [8], a non-Hermitian EVD
is performed on V. In the proposed HD-CB-DoA, two
M ×M Hermitian matrices R1 and R2 are generated:

R1 = V +V
H , (8)

R2 = V −V
H . (9)

Finally, lower-complexity Hermitian EVDs are applied
on R1 and R2, whose eigenvalues estimates the real and
imaginary parts of Φ, respectively: ΦR = EVD(R1) and

ΦI = EVD(R2). Consequently, Φ̂ = ΦR + jΦI . The
estimate for the DoAs θm is obtained by Eq.(6).

A dataflow diagram representation for the whole HD-
CB-DoA algorithm is found in Fig. 2.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In Table IV, there is a comparison among the number
of flops (Floating Point Operations) required by TLS-
ESPRIT, CB-DoA and the proposed HD-CB-DoA. The
definition of flop used here is the equivalent of a scalar
complex multiplication or a scalar complex addition.

Since P > M , due to the constraints of the algo-
rithms, the terms dependent on P are more critical to
the overall computational complexity of the algorithms.
The computational complexity of the operations are
extracted from [10]. Whenever possible, we consider
that the operations are performed by using tools in the
Krylov space, such as in [11] and also described in [10].
The use of Krylov space tools was considered for the
three algorithms on the EVDs, computed using Lanczos’
iterations for the Hermitian case or Arnoldi’s iterations
for the non-Hermitian one [10].

The proposed HD-CB-DoA avoids the use of non-
Hermitian EVDs, avoiding also the presence of O(n3)
terms. It is simple to notice in Table IV the advantages of
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Fig. 3. Reduction RHDCB in the amount of flops of HD-CB-DoA
in comparison to CB-DoA for 2 and 3 sources (black curves), and
RHDCB,par for the implementation suggested in Subsection IV-A (red).

complexity of both CB-DoA and HD-CB-DoA in com-
parison to ESPRIT. In order to compare the complexity
of CB-DoA (denoted CCB) and HD-CB-DoA (CHD) in
terms of flops, the reduction rate RHDCB was used:

RHDCB =
CCB − CHD

CCB

(10)

In Fig. 3, the results for metrics RHDCB are shown for
the scenarios with 2 and 3 sources. As shown in Fig. 3,
since the metrics RHDCB is positive for almost the whole
range of calculated values for P , the complexity of HD-
CB-DoA is lower than the complexity of CB-DoA by a
ratio which varies between 0.01 and 0.02.

A. Further Reduction

Consider again Fig. 2. Some of the operations are
independent, represented by the blocks on the vertical
flux of the diagram. Therefore, they may be performed
in parallel, which reduces the actual number of flops
involved in serially computing the whole algorithm.
There is a reduction of one subtraction of M × M
matrices (see Section III) and one EVD of an M ×M
matrix (see Section III). Then, the expression for CHD

is simplified to:

CHD,par = 2P 2 + P log(P ) +MP + 2M2 +

M log(M) + 1.5M +M2P +MP 2 (11)

Similarly to Eq. (10), the reduction rate is defined

RHDCB,par =
CCB − CHD,par

CCB

, (12)

which is evaluated in Fig. 3. For small values of P , there
is a more significant reduction when the parallelization
is taken into account. For two sources, RHDCB,par reaches
11% for P = 3. This is expected from Eq. (11), since
the dropped terms in complexity are dependent on M .
Whenever P ≫ M , the terms dependent on P dominate
and the advantages of parallelism are reduced.



TABLE I. COMPUTATIONAL COMPLEXITY COMPARISON ACCORDING TO THE VALUES LISTED IN [10] AND [11].

Flops

Operation (Complexity) TLS-ESPRIT CB-DoA Proposed

Non-Hermitian EVD (O(4n3/3 + n2)) 4M3/3 +M2 4M3/3 +M2 –

Hermitian EVD (O(2n2+n logn)) 8P 2+2P log(2P )+ 2P 2+P logP 2P 2+P log(P )+
8M2+2M log(2M) 4M2+2M log(M)

Multiplication (O(n3)) 4M2P +M3 M2P +MP 2 M2P +MP 2

Multipl. by Diagonal (O(n2)) – MP MP
Add/Subtract (O(n)) – P 1.5M +M2

Full Inversion (O(2n3/3)) 2M3/3 – –

Diagonal Inversion (O(n)) – P M

3M3 + 9M2+ 4M3/3 +M2 +MP+ 2P 2+P log(P ) +MP+
Overall 8P 2+2P log(2P )+ 2P 2+P logP+ 5M2+2M log(M) + 1.5M+

4M2P+2M log(2M) M2P +MP 2 + 2P M2P +MP 2

Dominant Terms 8M
3 + 4M

2
P+ 8P

2
4M

3/3+M
2
P+MP

2 + 2P
2

M
2
P+MP

2 + 2P
2
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Fig. 4. MSE results for 2 sources and 8 doublets.

V. SIMULATION RESULTS

The proposed algorithm presents a lower compu-
tational complexity than its antecessors. In order to
evaluate if it happens at the cost of degrading its error
performance, Matlab simulations have been performed
comparing HD-CB-DoA with CB-DoA and ESPRIT.

The simulated scenario comprises 2 sources trans-
mitting at 1.5 GHz and P = 8 doublets in the reception.
The receiving array presents an ULA (Uniformly Linear
Array) geometry with a λ/4 space between two adja-
cent antennas. The transmitted symbols use a Gaussian
random function modulating the cisoid at 1.5 GHz with
zero mean and unit variance. The metrics used for the
comparison is the Mean-Squared Error (MSE) given by:

MSE(θ̂) =
1

LT
‖θ − θ̂‖2

2
, (13)

where L = 300 denotes the amount of Monte Carlo
runs and T = 10, 000 is the number of transmitted
symbols per Monte Carlo run. The simulation results
are presented in Fig. 4. The results for the 3 algorithms
are similar for the whole range of the simulated SNRs.
In this scenario, as presented in Section IV, the pro-
posed HD-CB-DoA presents 1.8% less flops than CB-
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Fig. 5. MSE results for 3 sources and 12 doublets.

DoA and over 50% less flops than ESPRIT. When the
independence of the new EVDs is explored, as presented
in Subsection IV-A, the proposed HD-CB-DoA requires
around 4.5% less flops to finish its execution in compar-
ison to CB-DoA. In this case, the complexity reduction
of HD-CB-DoA over ESPRIT exceeds 60%.

Fig. 5 shows the simulations for 3 sources and 12
doublets, with similar MSE results for the range of
SNRs. HD-CB-DoA reduces around 1.6% the number
of flops of CB-DoA and presents 47% of reduction over
ESPRIT. When independence of EVDs is taken into
account, proposed HD-CB-DoA needs 4.7% less flops
than CB-DoA and around 50% less flops than ESPRIT.

VI. CONCLUSION

This article presents the novel HD-CB-DoA algo-
rithm, which uses only Hermitian matrices in its eigen-
decompositions. The proposed algorithm presents less
computational complexity, with similar MSE results in
comparison to both ESPRIT and CB-DoA. When the
independence of the new EVDs is explored, the reduc-
tion in complexity provided by HD-CB-DoA is more
significant. Possible continuations for this work include
incorporating transformation to a real subspace [12].
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