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Abstract—This paper describes an enhancement strategy based
on several perceptual-assessment criteria for dereverberation
algorithms. The complete procedure is applied to an algorithm
for reverberant speech enhancement based on single-channel
blind spectral subtraction. This enhancement was implemented
by combining different quality measures, namely the so-called
QAreverb, the speech-to-reverberation modulation energy ratio
(SRMR) and the perceptual evaluation of speech quality (PESQ).
Experimental results, using a 4211-signal speech database, indi-
cate that the proposed modifications can improve the word error
rate (WER) of speech recognition systems an average of 20%.

I. INTRODUCTION

Reverberation can drastically affect the performance of
current automatic speech/speaker recognition or hearing-aid
systems, motivating the use of appropriate speech enhance-
ment techniques to reduce its effects. Although reverberation
degrades speech intelligibility and perceptual quality, in a
small amount it makes speech more pleasant to common
listeners [1]. This paper analyzes an optimization procedure for
choosing the parameter values of a given dereverberation algo-
rithm based simultaneously on several perceptual-assessment
measures. In particular, the measures considered here include
the QAreverb [2], the speech-to-reverberation modulation en-
ergy ratio (SRMR) [3] and the perceptual evaluation of speech
quality (PESQ) [4]. The core idea is to combine the ability to
quantify the reverberation effect inherent to the QAreverb or
SRMR measures with the PESQ ability to evaluate the overall
quality of speech signals in the presence of other (coding)
artifacts. The method is illustrated with a one-microphone
dereverberation algorithm described in [5] but it is suitable to
any dereverberation algorithm and any number of sensors. Per-
formance of the final algorithm configuration is then analyzed
with the large databases deployed in [6], [7]. Results with the
given dereverberation algorithm acting as the front end to a
speech recognition system indicate an average improvement of
about 20% in the final word error rate (WER) in comparison
to the original algorithm performance.

In order to describe the proposed techniques, this paper
is organized as follows: In Section II, the main concepts
behind the optimization methodology are first introduced.
Section III presents the dereverberation algorithm considered
in this work, describing its main parameters whose values are
investigated later on. This section also details the employed
quality-assessment measures, as well as the reverberant-speech
databases used when applying the proposed methodology to
the dereverberation algorithm. Section IV shows the results
of the training experiments in three different scenarios, using

the word error rate of an speech recognition system as a
comparative measure. Finally, a conclusion concerning the
overall performance increase is provided in Section V.

II. PROPOSED METHODOLOGY

There exist many perceptual reverberation-assessing estima-
tors (e.g., [2]–[4], [8]–[12]), both blind (that is, based on the
reverberant signal only) and non-blind approaches. The need
for such assessments is inherent to modern communications
and even practical systems often incorporate quality-assessing
tools to evaluate their performance in a reliable manner.

The proposed methodology is intended to optimize simul-
taneously several complementary quality-assessment measures
to improve the performance of dereverberation algorithms. By
choosing a training set of speech signals and by selecting a
proper set of measures to be optimized, it is possible to fine
tune the parameters of the algorithm in question in a more
efficient way. The resulting parameter values are the ones
that yield a better compromise between the several quality-
assessing measures considered.

Figure 1 shows an example of the proposed technique using
two objective criteria. The feasible region is formed by all
combinations of algorithm parameters, obtained through an
exhaustive search. A Pareto frontier, which represents the best
trade-offs between all considered objectives, is then found.
Finally, a decision maker can decide which of the available
trade-offs works best, choosing an operating point (or a set of
operating points) that improves the considered measures in a
joint manner.
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Fig. 1. Illustrative example of proposed 2-objective optimization using PESQ
and SRMR as quality-assessment measures: The feasible region represents the
SRMR× PESQ values obtained for all combinations of possible parameter
values of a certain dereverberation algorithm. This plot allows one to choose
an operating point (set of parameter values) of the dereverberation algorithm
which provides the best compromise between the two measurements consid-
ered in the analysis.

The choice of the quality measures in the proposed op-
timization process has a significant role. If, for example,



two measures are highly correlated, the joint optimization
would be equivalent to the individual optimization, which
would entail an unnecessary waste of resources. Therefore,
in this proposal the idea is to combine reverberation-based
measures, such as the SRMR and QAreverb scores, with a
more general purpose (coding) quality measure, such as PESQ,
widely used for quality measurement of network transmitted
speech. The joint reverberation-coding measure better assesses
the algorithm performance, improving the intelligibility of the
resulting signal with respect to the results achieved with the
individual measures, as verified in Section IV.

III. PRACTICAL CONSIDERATIONS

In principle, the proposed optimization strategy may be
applied to any dereverberation algorithm, and with distinct
quality-assessment criteria. Its effectiveness, however, is il-
lustrated here based on a simple dereverberation scheme [5]
described in Subsection III-A and on the QAreverb, SRMR,
and PESQ measures discussed in Subsection III-B. In addtion,
all experimental data employed in this work are detailed in
Subsection III-C.

A. Dereverberation Algorithm
The overall structure of the spectral subtraction dereverber-

ation algorithm devised in [5] (as a simplification of the Wu-
Wang algorithm introduced in [13]) is depicted in Fig. 2. In
this scheme, the reverberant signal z(n) is modeled as the
convolution of the room impulse response (RIR) h(n) and the
anechoic (clean) speech signal s(n), that is

z(n) =

N∑
l=0

h(l)s(n− l). (1)
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Fig. 2. Diagram of the spectral subtraction algorithm.

Let Sz(k,m) = |Sz(k,m)|ejϕz(k,m) be the FFT of the m-
th frame of the windowed version of z(n), where a 32 ms
Hamming window with 24 ms overlap between consecutive
frames is used, and w(m) be an asymmetrical smoothing
window based on the Rayleigh distribution, given by

w(m) =

{ (
m+a
a2

)
e

(
−(m+a)2

2a2

)
if m > −a

0 otherwise
, (2)

where the parameter a controls the overall spread of the
function.

The model of the power spectrum of the late reverberation
can be described as

|Sl(k,m)|2 = γw(m− ρ) ∗ |Sz(k,m)|2, (3)

where “∗” represents the convolution operation in the time
domain, k is the frequency bin, and m refers to the time frame.
The parameter γ is a scaling factor and ρ represents the length
of the early reflections.

Considering that the early and late components are mu-
tually uncorrelated [13], the power spectrum of the early
impulse components can be estimated by subtracting the power
spectrum of the late impulse components from the rever-
berated speech. The spectrum subtraction scheme performs
a weighting in the power spectrum of z(n), and the block
SUBTRACTION is given by

|Ss(k,m)|2 = |Sz(k,m)|2 max

[
1− |Sl(k,m)|2

|Sz(k,m)|2
, ε

]
, (4)

where ε is the floor and corresponds to the maximum attenua-
tion. The power spectrum of the output (dereverberated) spech
signal x(n) is given by

|Sx(k,m)|2 =
√
|Sz(k,m)|2 × |Ss(k,m)|2. (5)

Finally, in order to calculate the spectrum of x(n), the
phase ϕz(k,m) of Sz(k,m) is combined to the magnitude
|Sx(k,m)|, such that

Sx(k,m) = |Sx(k,m)|ejϕz(k,m), (6)

which allows one to estimate the clean signal x(n) as desired.

From this algorithm, four parameters were chosen for the
optimization process, as detailed bellow:

• Scaling factor (γ): Specifies the relative strength of the
late-impulse components of the reverberant speech signal
in Equation (3). Despite many factors contribute to this
relative strength (for instance, the reverberation time),
the system performance is not very sensitive to specific
values of γ [13]. The original value of the scaling factor
was γ = 0.35.

• Attenuation limit (ε): Corresponds to the maximum at-
tenuation in Equation (4). The original value of this
parameter was ε = 0.001, equivalent to an attenuation
of 30 dB.

• Early-reflections length (ρ): Indicates the relative delay
of the late impulse components in Equation (3). This
delay reflects speech properties and is independent of
reverberation characteristics. It is commonly considered
to correspond to around 50 ms, which implies ρ = 7
frames. This value of ρ was set in the original algorithm.

• Spread control (a): This parameter controls the overall
spread of the function w(n) from Equation (2). It needs
to be smaller than ρ to provide a reasonable match to the
equalized impulse-response shape. The original value of
this parameter was a = 6.

These four parameters were combined within different
ranges in order to proceed with the optimization strategy. Table
I shows the parameter ranges considered for the optimization
of the algorithm, which gave a total of 2475 training setups.



TABLE I
RANGE OF VALUES OF EACH PARAMETER USED IN THE OPTIMIZATION

PROCESS OF THE DEREVERBERATION ALGORITHM.

Parameter Range
γ {0.30, 0.31, 0.32, . . . , 0.40}
ε {10−5, 10−4, 10−3, 10−2, 10−1}
ρ {1, 2, 3, 4, 5, 6, 7, 8, 9}
a {1, 2, 3, 4, 5, 6, 7, 8, 9}, with a ≤ ρ

B. Quality-Assessment Measures
In this work, the perceptual quality of a reverberant speech

signal is evaluated according to the following quality mea-
sures:

• The QAreverb [2] measure Q is defined as

Q = −σ
2T60
Rγ

, (7)

where σ2 denotes the room spectral variance defined
in [15], T60 is the reverberation time (time interval
required for the sound-pressure to decay 60 dB after
its initial stimulus ceases [16]) and R is the direct-
to-reverberant energy ratio [17]. In this expression, the
constant factor γ sets the importance of R with respect to
the other two parameters, and its value was heuristically
set to γ = 0.3, maximizing the correlation between Q and
the subjective scores for a reverberant-speech database
developed in [2]. In practice, the parameters σ2, T60, and
R can be obtained directly from the RIR, h(n), which is
estimated from the deconvolution process between the
clean and the reverberant speech signals. In the final
stage, the value of Q is mapped onto the 1–5 mean-
opinion scale (MOS) using a nonlinear transformation
yielding the QMOS QAreverb measure.

• The speech-to-reverberation modulation energy ratio
(SRMR) [3] is a non-intrusive quality and intelligibility
measurement of reverberant and dereverberated speech.
SRMR is the ratio of the average energy in the low mod-
ulation frequencies (4 – 18 Hz) to the high modulation
frequencies (29 – 128 Hz). Larger values are assumed to
indicate better speech quality.

• The perceptual evaluation of speech quality (PESQ) [4]
is an ITU-T standard measure, also suitable for distor-
tions commonly encountered when speech goes through
telecommunication channels, such as packet loss, sig-
nal delays, and codec distortions. PESQ compares two
perceptually-transformed signals and generates a noise
disturbance value to estimate the perceived speech qual-
ity. Larger values are assumed to indicate better quality.

C. Reverberant-Speech Databases
The main database used in this work was provided by the

REVERB (REverberant Voice Enhancement and Recognition
Benchmark) Challenge 2014 [18], which divided the data into
the so-called development database and evaluation database.
Each of these databases were further divided into two datasets:

• SimData: contains speech signals from the WSJCAM0
database [6], artificially convolved with RIRs measured
in three different rooms with different volumes (small,
medium and large) and two different source-microphone

distances (near = 50 cm and far = 200 cm). Background
noise was added to each signal at fixed signal-to-noise
ratio (SNR) of 20 dB. The reverberation times for these
rooms are {250, 680, 730} ms.

• RealData: contains a set of real recordings from the MC-
WSJ-AV database [7] made in a reverberant and noisy
meeting room (which is different from the ones used for
SimData) with two different source-microphone distances
(near ≈ 100 cm and far ≈ 250 cm). The reverberation
time for this room is about 700 ms.

All utterances considered were captured with single-channel
microphones at a sampling frequency of 16 kHz. The de-
velopment database is composed by 1484 utterances from
SimData and 179 utterances from RealData. The wider evalu-
ation database, with similar characteristics to the development
database, is composed by 2176 utterances from SimData
and 372 utterances from RealData. Both development and
evaluation sets are employed in the present work.

IV. EXPERIMENTAL RESULTS

Following the proposal of this work, a small 12-signal
training set (composed by one female and one male utterance
randomly selected from each reverberation condition within
the SimData dataset) was elaborated for the fine-tuning of
the spectral-subtraction parameters. Feasible regions were
elaborated by combining these parameters within their ranges
according to Table I and computing the average of the QMOS,
SRMR, and PESQ scores in the framework of the training set.
In that manner, through the SRMR×PESQ and QMOS×PESQ
relations for the obtained regions, a new operating point for
the algorithm that jointly maximizes the desired measures
was chosen. Among the Pareto-frontier solutions, the overall
optimum was determined as the point with lower WER.

In order to show and compare the performance of the
proposed method, three distinct scenarios were considered, as
detailed below:

Scenario 1 (S1): Corresponds to the original configuration
of the two-stage dereverberation algorithm proposed in [13].
In this case, besides the spectral-subtraction block, an inverse-
filtering stage is first employed. For the spectral-subtraction
stage, the original parameter set was {γ = 0.32, ε = 10−3, ρ =
7, a = 5}.

Scenario 2 (S2): In this scenario, the dereveberation algo-
rithm described in Section III-A was tested. The original set
of parameters was {γ = 0.35, ε = 10−3, ρ = 7, a = 6}.

Scenario 3 (S3): This scenario corresponds to the optimized
algorithm configuration. After following the proposed method,
the operating point of the optimized algorithm was achieved
by the set {γ = 0.39, ε = 0.1, ρ = 9, a = 5}.

Figures 3 and 4 illustrate the SRMR×PESQ and QMOS×
PESQ plots, respectively, obtained in the training process.
Each scattered cross of these plots corresponds to one of the
2475 training setups. These two figures also show the Pareto-
optimal solutions, the operating points of the three scenarios
S1, S2 and S3, as well as the point corresponding to the
unprocessed training signals. The set chosen in S3, represented
by an asterisk, was the one with a lower error rate among the
Pareto-solutions. The values of the perceptual measures for
the three scenarios and for the unprocessed signals within the
training process are summarized in Table II.
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Fig. 3. SRMR×PESQ plot for the training process showing the operating
points of the unprocessed signals and scenarios S1, S2, and S3.
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Fig. 4. QMOS×PESQ plot for the training process showing the operating
points of the unprocessed signals and scenarios S1, S2, and S3.

TABLE II
QUALITY MEASURES OBTAINED IN THE TRAINING PROCESS FOR THE
UNPROCESSED SIGNALS AND FOR EACH SCENARIO S1, S2, AND S3.

Scenario SRMR PESQ QMOS

Unprocessed 3.68 1.39 3.28
S1 4.24 1.24 3.64
S2 5.04 1.33 3.63
S3 4.90 1.55 3.64

To evaluate the proposed modifications from the point
of view of speech intelligibility, the performance of each
algorithm configuration (scenario) was assessed through the
word error rate (WER) of a speech recognition system based
on HTK and provided by the REVERB challenge.

Tables III and IV show the WER results for each scenario
and each subset of development and evaluation databases.
From these results, it can be observed that the S3 scenario
surpassed all other configurations in almost all cases, thus
verifying the effectiveness of the proposed method. The results

for SimData Room 1 show a slightly worst performance for
the all the processed speech signals. This is because the
perceptual quality of the signals from this setup was already
considerably high. However, it must be noticed that the S3
scenario stays close to the unprocessed WER results for this
room. In comparison to the Wu-Wang algorithm configuration
(S1), scenario S3 presents an average improvement of 36%
and 37% for SimData, and 21% and 18% for RealData. It
also can be seen that for every setup, S1 worsens WER in
relation to scenario S2, which reinforces the conclusions drawn
in [5], regarding the removal of the inverse-filtering stage from
the original two-stage algorithm [13]. Comparing with the
unmodified algorithm (S2), scenario S3 improves by 24% for
SimData and by 10% for the RealData set.

TABLE III
WORD ERROR RATE (WER) IN % FOR BOTH DEVELOPMENT AND

EVALUATION SIMDATA DATASET. BOLD NUMBERS INDICATE BEST
RESULTS.

Room 1 Room 2 Room 3 Avg.Scenario Near Far Near Far Near Far –
Development dataset

Unproc. 15.3 25.3 43.9 85.8 51.9 88.9 51.8
S1 65.9 76.9 62.4 76.9 72.4 83.8 73.0
S2 54.0 64.6 51.0 66.9 59.9 69.8 61.0
S3 18.7 25.8 26.8 57.5 33.1 60.6 37.1

Evaluation dataset
Unproc. 18.1 25.4 42.9 82.2 53.5 88.0 51.7

S1 82.1 71.9 60.9 72.8 73.7 86.8 74.7
S2 61.3 68.5 49.2 62.1 58.8 77.3 62.0
S3 23.4 28.5 27.1 50.7 35.8 62.0 37.9

TABLE IV
WORD ERROR RATE (WER) IN % FOR BOTH DEVELOPMENT AND

EVALUATION REALDATA DATASET. BOLD NUMBERS INDICATE BEST
RESULTS

Room 1 Avg.Scenario Near Far –
Development dataset

Unproc. 88.7 88.3 88.5
S1 83.5 84.9 84.1
S2 73.6 74.2 73.9
S3 61.6 64.6 63.1

Evaluation dataset
Unproc. 89.7 87.3 88.5

S1 89.2 87.7 88.4
S2 81.5 79.6 80.6
S3 72.4 69.2 70.8

V. CONCLUSION

This work proposes an enhancement strategy for derever-
beration algorithms, based on the optimization of several per-
ceptual measures simultaneously. The complete procedure was
applied to an algorithm for reverberant speech enhancement
based on a single-channel blind spectral-subtraction block.
For this algorithm, four of its parameters were finely tuned
following a jointly perceptual perspective. Results demonstrate
effectiveness of proposed approach as it led to an algorithm
scenario that outperformed other configurations in terms of
speech intelligibility, as assessed by the lower WER achieved
by a speech recognition system.
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