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Abstract—The detection of abandoned objects in videos from

moving cameras is of great importance to automatic surveillance

systems that monitor large and visually complex areas. This

paper proposes a new method based on sparse decompositions

to identify video anomalies associated with abandoned objects.

The proposed scheme inherently incorporates synchronization

between the reference (anomaly-free) and target (under analysis)

sequences thus reducing the implementation complexity of the

overall surveillance system. Results indicate that the proposed

video-processing scheme can lead to 95% complexity reduction

while maintaining excellent detection capability of foreground

objects.

I. INTRODUCTION

In present days video surveillance systems are almost
everywhere, as most public places have one or more fixed
cameras performing security tasks. According to a report from
Transparency Market Research from 2016 [1], for instance, the
video surveillance equipment market worldwide is expected
to reach around U$43 billions by 2019. All this surveillance
infrastructure generates a huge amount of video data that
humans most likely will not be able to analyze properly. To
deal with this issue several algorithms have been designed to
process the video streams automatically and extract significant
and reliable information [2], [3].

In some of these applications the camera may be too
expensive to be attached to a single place overlooking a
specific section of the environment. In this case a possible
solution is to install the camera on a mobile platform that
covers a wide surveillance area. Some solutions have been
proposed in the last few years to cope with the problem of
detecting abandoned objects in such scenarios: in [4] a camera
mounted on a car performs the detection of objects on streets;
in [5] a camera mounted on a robot platform detects abandoned
objects in an industrial environment; and in [6] a camera placed
on a train detects the presence of objects on the rails.

This paper deals with a class of such anomaly detection
methods, that is based on sparse representations of the ref-
erence (certified anomaly-free) and target (to be processed)
video sequences. One successful example of such methods
is the one in [5], that uses robust subspace recovery [7],
[8] to detect abandoned objects in a cluttered industrial plant
using a single camera mounted on a robotic platform that
follows a predefined path. Although presenting good detection
performance, the method in [5] requires the previous temporal
alignment of the reference and target videos. The present paper
then introduces a novel method where the video synchroniza-

tion procedure is inherent to the sparse representation, greatly
reducing the overall computational complexity of the entire
anomaly-detection procedure.

To introduce the proposed techniques, the remainder of
this work is organized as follows: Section II reviews the
method in [5] and Section III describes the proposed method
in which temporal alignment can be obtained from the sparse
decomposition used for anomaly detection. In Section IV
the experimental results are presented and discussed, and in
Section V the authors’ conclusions are provided.

II. MOVING-CAMERA ROSURE

In this section we describe the work in [5] to establish the
grounds for the proposed contributions. In that work a sparse
decomposition technique, referred to as Robust Subspace Re-
covery (RoSuRe) [7], [8], represents a data matrix X as

X = LW +E, (1)

where L is a low-rank representation of X that is also a
union of low-rank subspaces, matrix W is a block-diagonal
sparse matrix that specifies how the subspaces of L should be
combined to approximate X, and E is a residue matrix. In this
framework L can be non-trivially represented by its subspaces,
such that LW = L, with Wii = 0. A fundamental feature of
the RoSuRe algorithm is that both W and E matrices are
sparse. To obtain such representation one performs the follow-
ing minimization using convex optimization techniques [9]:

min
W,E

||W||1 + �||E||1, s.t.X = L+E, LW = L, Wii = 0.

(2)
In [5] an anomaly-detection algorithm for moving cameras

was developed based on the RoSuRe scheme. In such approach
one assumes that the surveillance camera moves slowly enough
so that consecutive frames of the video share a low-rank rep-
resentation. Therefore, the so-called moving camera RoSuRe
(mcRoSuRe) algorithm starts by decomposing the reference-
video matrix Xr using Eq. (1), such that

Xr = LrWr +Er, (3)
Er = Xr � Lr, (4)

where Lr is the low-rank representation of Xr and Er is its
sparse complement. If we consider that the low-rank represen-
tation of the target sequence Xt is also Lr, then it is possible to
rewrite Xt using a formulation analogous to Eq. (1), yielding

Xt = LrWt +Et, (5)
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with Wt and Et both being sparse matrices. The step-by-step
optimization algorithm used to perform this decomposition is
detailed in [5]. In this decomposition all the information of Xt

that could not be represented from LrWt is cast upon Et. This
is just the case of the anomalies in the target sequence (Xt),
that are not present in neither the reference matrix Xr nor in
Lr. However, the information in Et is not restricted to only
the anomalies in the target video. As Lr is a low-rank matrix
it is not able to represent neither high-frequency components
of the target sequence (Xt) nor the components caused by the
absence of registration between the two video sequences. Both
of these terms, however, are supposed to be common between
the reference and target videos and therefore can be extracted
from Et using the similar decomposition

Et = ErWe +Ee. (6)

If this final decomposition is performed correctly matrix Ee

will contain only the desired anomalies in the target video.
A summarized version of the mcRoSuRe algorithm is

presented in Algorithm 1.

Algorithm 1 Moving Camera RoSuRe
Require: Xr, Xt

minWr,Er ||Wr||1 + �||Er||1, s.t.Xr = Lr +Er,
LrWr = Lr, Wrii = 0

minWt,Et ||Wt||1 + �||Et||1, s.t.LrWt = Xt �Et

minWe,Ee ||We||1 + �||Ee||1, s.t.ErWe = Et �Ee

As can be verified in [5], this algorithm has a good
performance when the anomalies to be detected using a moving
camera are abandoned objects in visually complex environ-
ments. Although this algorithm in principle does not require
time alignment between the reference and target videos, its
optimization steps are computationally very expensive. Due to
this fact, experiments in [5] could only be run in very small
video sequences, e.g., of dimensions 320⇥180 pixels, with 70-
frame long reference and 50-frame long target videos.

III. TARGET LOCALIZATION USING THE MCROSURE-TA
ALGORITHM

In this section we propose the mcRoSuRe-TA (mcRoSuRe
- Temporal Alignment) algorithm, which is a modification
of the mcRoSuRe algorithm that inherently incorporates the
temporal sequence alignment between the reference and target
videos. The mcRoSuRe-TA has the advantage of saving a
lot of computation by reducing the unnecessarily large search
space in the optimization steps within the standard mcRoSuRe
approach.

An example of a mcRoSuRe Wt matrix (see Eq. (5)) can
be seen in Fig. 1. By analyzing its structure it is possible to
see that these sparse matrices bear some information that can
be useful for aligning the reference and target videos - the
significant Wt coefficients (white) indicate which frames of
the low rank reference video Lr influence each frame of the
reference video Xt in the sparse model of Eq. (5). However,
since the white stripe in Wt is quite wide, such information is
not very helpful. This is so because a wide white stripe means
that one frame in Xt corresponds to too many frames in Lr,
which implies that proper frame alignment requires a search
in a space that is still too large.

Figure 1. Wt matrix from the mcRoSuRe method. The brighter pixels denote
higher values in the matrix. The vertical dimension corresponds to the target
video and the horizontal dimension to the reference video.

In the experiments performed in this paper, short target
videos, containing only a small amount of frames that may
contain abandoned objects (e.g., 200 frames) should be tem-
porally aligned with long reference videos (of about 6000
frames). In order to use the Wt matrix for alignment purposes
it is necessary to find first the region of the reference video that
has greater correlation with the target video being processed.

As pointed out above, to reduce the search space one should
have a Wt matrix with a narrow white stripe. The main reason
for the wide white stripe in Wt depicted in Fig. 1 is that Lr

is low rank, which makes the frame correspondences between
Xt and Lr somewhat fuzzy. Therefore, we propose to use
the original reference data matrix Xr instead of the low-rank
matrix Lr to reconstruct the target video data matrix Xt, thus
modifying Eq. (5) to

Xt = XrWt +Et. (7)

The advantages brought by this modification are twofold: the
first concerns the alignment precision and the second the
algorithm complexity.

The improvement in alignment precision can be better
explained as follows: as the matrix Lr is a low-rank repre-
sentation, it does not contain the high-frequency components
of the reference video Xr. Thus, when one tries to use Wt

generated by Eq. (5) for this purpose the result is not precise
enough since Xt still has high-frequency components that are
not well mapped by Lr. As can be seen in Fig. 2 matrix
Wt generated with Eq. (5) has a wide white stripe, that is,
it does not show precisely which frames in Lr correspond to
the proper target video frames. On the other hand, matrix Wt

generated with Eq. (7) presents a more sharp delimitation of
this region, as illustrated in the same figure.

(a) Matrix Wt generated with Eq. (5).

(b) Matrix Wt generated with Eq. (7).

Figure 2. Matrices Wt generated with: (a) Eq. (5); (b) Eq. (7). Brighter pixels
denote higher values in the matrices. The vertical dimension corresponds to
the target video frames and the horizontal dimension to the reference video
frames. In (b) the region of the reference video that corresponds to the given
target video section is more sharply delimited.

The lower complexity for the resulting algorithm comes
first from the fact that for calculating the Wt in the mcRoSuRe
algorithm (Eq. (5)) one must generate Lr, while if one uses
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Xr instead of Lr to decompose Xt one saves that initial com-
putation. Another important factor is that the matrix Wt from
Eq. (7) has a thinner white stripe than the one from Eq. (5),
which implies a more precise mapping for the reference frames
used to reconstruct the target-video frames.

In addition, by using the proposed mcRoSuRe-TA tech-
nique to align the reference and target video sequences one
can perform the anomaly detection using only the reference
video excerpt that corresponds to the target video sequence
under analysis. To do so it suffices to crop the reference video
frames using the Wt as a guide, as detailed in Fig. 3. In such
scenario, the selected frames compose a new reference excerpt
that we refer to as X0

r that has much less columns than Xr,
which greatly reduces the resulting computational complexity.

(a) (b)

Figure 3. By using Wt in Eq. 7 one can select frames of the reference video
that correspond to the target video frames and create a smaller reference matrix
X0

r that contains only the relevant reference frames for processing the target
frames. Using such a smaller reference sequence saves a lot of computation.
(a) Represents the Wt obtained using the whole reference matrix Xr (b)
Represents the Wt obtained using the cropped version of the reference
matrix X0

r

After composing matrix X0
r and performing again the

decomposition in Eq. (7), one obtains a matrix W0
t and

a residual E0
t. The resulting W0

t will look somewhat like
Fig. 3(b). As in the original mcRoSuRe scheme, one then has
to perform the decomposition of E0

t obtained from Eq. (7)
with E0

r matrix (using Eq. (1) with X0
r matrix). Therefore,

in the mcRoSuRe-TA scheme, besides the step in Eq. (7), three
more steps are needed

X0
r = L0

rW
0
r +E0

r, (8)
Xt = X0

rW
0
t +E0

t, (9)
E0

t = E0
rW

0
e +E0

e. (10)

One example of the resulting residue matrix E0
t side by side

with E0
e is shown in Fig. 4.

(a) Residue matrix E0
t. (b) Residue matrix E0

e.

Figure 4. There are fewer undesired artifacts in the residue matrix E0
e when

compared with E0
t.

Using the mcRoSuRe-TA algorithm it is possible to work
the full abandoned object detection framework, obviating an
external temporal alignment step, as described in Algorithm 2.

IV. EXPERIMENTAL RESULTS

The proposed algorithm was tested using the VDAO
database of abandoned objects (described in [10] and available
at [11]). This database consists of several videos recorded

Algorithm 2 Object Detection Using Proposed mcRoSuRe-TA
minWt,Et ||Wt||1 + �||Et||1, s.t.Xt = XrWt +Et,
Crop reference frames of interest based on Wt matrix.
Create X0

r.
minW0

r,E0
r ||W0

r||1 + �||E0
r||1, s.t.X0

r = L0
r +E0

r,
L0

rW0
r = L0

r, W0
rii = 0

minW0
t,E0

t ||W0
t||1 + �||E0

t||1, s.t.X0
rW0

t = Xt �E0
t

minWe,Ee ||We||1 + �||Ee||1, s.t.E0
rWe = E0

t �E0
e

in a visually cluttered, industrial environment, with a camera
mounted on a moving platform that follows a linear back and
forth path. Each video contains several back and forth passes
of the camera. In the database several different objects are
placed along the path, with every object configuration being
recorded in two different lighting conditions. Every video in
the database that has been recorded with an abandoned object
configuration has a corresponding reference video with no
abandoned objects. Also, every target video has at least one
abandoned object.

Although the VDAO database videos are in color and with
HD resolution, in the performed experiments they were down-
sampled to 320⇥180 resolution and converted to grayscale.
Also, in the experiments only one forth pass of each video has
been used, which corresponded to an average of 5000 frames
per reference video. The target videos are segments of 200
frames that contain at least one abandoned object. All exper-
iments were performed with the same machine configuration:
an Intel i7-3630QM with 2.4GHz and 16GB of RAM, running
MATLAB c� 2012b.

Fig. 5 shows the comparison between the results from
the mcRoSuRe [5] and proposed mcRoSuRe-TA algorithms.
In the mcRoSuRe results a temporal pre-alignment step has
been performed manually, that is, the reference video was
selected in a way to ensure it would at least contain the same
region shown in target video. In contrast, for mcRoSuRe-TA
the alignment is performed automatically using matrix W0

t

as explained above. Some sample frames of the intermediate
steps of the algorithm are shown in Fig. 5 for comparative
purposes. In each column a video containing one single object
of the VDAO [11] database is represented, with each row
representing a step of the respective algorithm.

These results show that the performance of the proposed
mcRoSuRe-TA algorithm is at least as good as that of the
mcRoSuRe algorithm. Both methods are able to detect cor-
rectly the abandoned objects in the given cluttered scenario.
In addition, for both algorithms false negative detections are
very rare and mostly caused by strong similarities between
the intensity values of the object and the background in
the reference video. Also, likewise the mcRoSuRe, most of
the false positive detections in mcRoSuRe-TA are caused by
camera jitter or lighting differences between the reference and
target videos.

To assess the computational performance of both methods
two different experiments were run. The first one used the same
experimental setup of [5], where small 50-frame target videos
were processed with reference videos only a few frames larger
(70 frames, chosen manually, as explained above). In these
conditions, both algorithm run in equivalent times. The second
experiment used larger reference (900 to 5000 frames) and tar-
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Xr

Xt

|Ee|
mcRoSuRe

|E0
e|

mcRoSuRe-TA
(proposed)

(a) (b) (c) (d)

Figure 5. Comparative results between the two algorithms (single frames of matrices Xr , Xt, and E of both methods) for 4 different abandoned-object videos
from VDAO [10] database: (a) pink bottle; (b) shoe (c) backpack + wrench + box; (d) umbrella + bottle + bottle cap + mug. The similar performance of both
methods is clear from these experiments.

get (100 to 200 frames) video sequences. In this new and more
realistic scenario the mcRoSuRe-TA algorithm was able to run
at least 20 times faster than the mcRoSuRe, yet maintaining
the same qualitative detection results. This happened because
mcRoSuRe-TA could process the whole reference video much
more efficiently, using the whole reference only in its first steps
to obtain the matrix Wt (see Figs. 2 and 3). After this step
the proposed scheme uses only the smaller reference videos,
which provides significant savings in computation.

V. CONCLUSION

This paper proposed the mcRoSuRe-TA algorithm, an
algorithm for detecting anomalies in a cluttered environment
using a moving camera. The proposed scheme is a modification
to the mcRoSuRe algorithm [5] that embeds a form of time
alignment between the reference and target videos, restricting
the search space for every optimization step and, therefore,
reducing the resulting computational complexity. Unlike its
standard counterpart mcRoSuRe, the proposed mcRoSuRe-TA
can run using the full reference video without compromising
the overall computational complexity. Results obtained using
the VDAO database are encouraging as the method is able to
detect effectively the abandoned objects with very few false
detections.
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