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Abstract. This paper proposes two modifications in a classification
method for unbalancing fault severity analysis in rotating machines based
on the unbalancing mass force. The unbalancing severity was categorized
into three severity levels, namely High (H), Medium (M) and Low (L).
The feature vectors used information from discrete-time Fourier trans-
form (DFT), kurtosis and entropy from the vibration signals. Similarity
based Model (SBM) and Kernel discriminant analysis (KDA) techniques
were applied in order to evaluate the feature discrimination and reduce
the input feature space. All these techniques were tested in a random for-
est classifier. Test results indicate that non-linear transformations to the
feature space combined to random forest can further improve the clas-
sification of unbalancing severity defect, by reducing the feature space
dimension from 31 to 6.
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1 Introduction

Rotating machines play a very important role in industrial processes, acting from
the production of petrochemical elements to the energy general of an industrial
plant. The oil and gas industry is a very demanding market for rotating machines
with an amount of two thousand new compressors and five thousand new pumps
per year [1]. Considering the financial importance of this industry, the mitigation
of failures improving the reliability of the process is a crucial and continuous
target.
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The predictive maintenance procedures came up with the development of
automation in industrial processes allowing an efficient production monitoring
by means of sensors spread all over the plant. These sensors were capable of
acquiring several different data from the machinery leading to areas of fault
analysis and prediction, which consequently caused production cost reduction,
efficiency increase, and undesired halts and spare parts changes avoidance.

One very important cause of defects in machine is the excessive vibration,
which could be related to machinery life reduction, production shortage and
increase in maintenance costs. Unbalance, misalignment, loose part as many
other problems could generate machine vibration.

Vibration due to unbalance is one of the most classical and common problems
in rotating machines already addressed in [3] using a centrifugal pump as case
study. Another example is shown in [2], where unbalanced rotor lead to cracks in
the rotor shaft. A substantial literature can be found about problem of unbalance
in rotating machines.

1.1 Previous Researches

Kernel-based algorithms have been used in conjunction with learning functions,
reaching good results in the areas of text data, speech data, biological data
and complex data structures. These algorithms can be defined on any input
space. In machine learning area, there are still problems to be studied using
kernel algorithms. The first problem is choosing the type of kernel function for a
classification problem [4]. This is bound to the problem of select a representation
of the input. This selection may entail big differences in the results. The second
problem is when the kernel is fixed and the issue is to choose the best value for
the regularization parameter. This can be solved using the regularization path
algorithms or employing cross validation methods [5].

The research made by [6] studied a remote system for online condition mon-
itoring and fault diagnosis of gas turbine on offshore oil well drilling platforms
based on a kernelized information entropy model. It used entropy for measuring
the uniformity of exhaust temperatures that reflects the condition of gas turbine.
It also used features in kernel spaces to monitor the condition of the equipment
using decision trees as the classification strategy.

In the research done by [7] the experimental bench alignment/balance vibra-
tion trainer (ABVT) of Spectra Quest was used to produce the following failure
scenarios: misalignment, unbalance, fail in the outer track, fail in the rolling
element and fail in the cage. The total failure scenarios produced and analyzed
were 1951, resulting in the machinery fault database (MaFaulDa) [8].

The work done by [9] aimed to provide an overview of the similarity-based
modeling (SBM) and use this technique to monitor the condition of rotating
machines through vibration signals. This research examined the accuracy of this
method to detect and diagnose faults in electric motors with variable speed
operating conditions. The application of this technique enables the detection of
incipient faults in rotating machines.
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SBM has been used in many cases of industrial application, like anomaly
detection in power plants, modeling airplanes flight paths and fault diagnosis in
electric motors. In the work of [10], an automatic fault detector and classifier
was proposed using SBM to classify the following defects in rotating machines:
bearing defects, misalignment and unbalance. The use of similarity model may be
used in two ways: as a standalone classifier or as an auxiliary model to produce
features for another classifier. In this article the use of SBM algorithm increased
the number of hits in the classification in the MaFaulDa database. The results
of this article showed that the SBM model indeed increased the accuracy of the
random forest classifier [10].

In the work of [11] it was proposed a system to evaluate the fault severity in
DC electric motors. After diagnosing the defect in the motor, the degree of failure
might be evaluated with the objective of rightly plan the future action to restore
the equipment and reduce the unscheduled halt and maintenance costs. The
failure scenarios were composed by bearing faults, unbalance and misalignment
of the MaFaulDa database that were quantified in 3 levels of severity, namely L
(Low), M (Medium) and H (High) without the use of the mechanical background
in the quantification process.

Martins et al. [12] proposes a classification method for specifically unbal-
ancing fault severity rotating machines based on the force created by the mass
of unbalancing, using only the signals of the unbalance scenario of MaFaulDa
database. The study evaluated the capacity to quantify the severity of the unbal-
ancing fault of a rotating machine considering the angular velocity, differing to
previous works, which the objective was the severity quantification, not consid-
ering the angular velocity, which may increase classification errors. The unbal-
ancing severity was broken down into 3 discrete levels which were L (Low), M
(Medium) and H (High). The random forest algorithm was used as a classifier
for the unbalancing severity analysis problem.

2 Discriminant Analysis

2.1 Linear Discriminant Analysis

The Linear discriminant analysis aims to find a linear transformation by the
maximization of inter-class distance and minimization of intra-class distance.
This method explicitly attempts to model the difference between the classes
of data. Linear discriminant function is a linear combination of characteristics
which is typified by producing maximum separation between two populations.

The LDA is a method that uses information from the categories associated
with each pattern to linearly extract the most discriminating characteristics.
When used as a classification method, it is a supervised method that use the
train data to find the boundary of the classes [13]. In this work, LDA is used only
as a vector space transformation and its results are used by another classification
algorithm.
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The scatter matrices inter-class Sb and intra-class Sw is defined by:

Sb =
G∑

i=1

Ni

(
x(i) − x

)(
x(i) − x

)T
, and (1)

Sw =
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Ni∑

j=1

Ni

(
x(i)
j − x(i)

) (
x(i)
j − x(i)

)T
, (2)

where G is the total number of class or groups, Ni is the number of patterns of
classes i, x(i)

j is the M-dimensional pattern j from class i, the vector x(i) is the
unbiased mean vector of class i. The overall mean vector is given by:

x =
1
N

g∑

i=1

Ni∑

j=1

x(i)
j , (3)

where N is the total number of samples.
The principal objective is to establish a projection matrix Wlda that opti-

mize the ratio of the determinant of the between-class scatter matrix to the
determinant of the intra-class scatter matrix known as Fisher criterion obtained
from the following equation:

Wlda = arg max
W

|WTSbW|
|WTSwW| . (4)

The Fisher criterion described in Eq. (4) is maximized when the projection
matrix Wlda is composed of the eigenvectors of Sw

−1Sb with at most (G − 1)
nonzero corresponding eigenvalues [14].

The LDA cannot be used to separate high dimensional problems with accu-
racy. The other problem is that Sw is usually singular or mathematically unsta-
ble.

2.2 The Kernel Discriminant Analysis

The kernel trick is a way of mapping observations from a general set into an inner
product space, without having to compute the mapping explicitly in machine
learning algorithms. It can modify the problem from a lower dimension to a
higher dimension. Transforming the problem from a lower to a higher dimension
makes the approximation function more flexible to the data, reducing the risk
of empirical error.

The non-linear mapping of the original space to a larger dimensional feature
space commonly leads to a dispersion matrix within poorly placed class. The
KDA is useful to figure out the instability issues and the singularity of linear
Fisher methods.
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To modify a LDA algorithm to a kernel version is necessary to change the Sw

to SK
w . This can be done by applying the eigenfunction to the scatter matrices Sb

and Sw in the feature space as shown in [15], or using a intuitive mathematical
result as proposed in [16].

KDA is capable of projecting the sample data onto matrix B, in order to
separate the samples as discriminating as possible. Being Kc the centralized K,
thus St

K = KcKc is the total scatter matrix, SK
b = N−1KcYYTKc is the

between-class scatter matrix and SK
w = SK

t − SK
b is the within-class scatter

matrix. Assuming that the dataset consists of {(xn, yn)}Nn=1, where xn is the
input vector and yn is its associated class given by yn ∈ {1, . . . , G}. The indicator
matrix Y is built with elements Y (n, i) corresponding to row n and column
(class) i defined as [17,18]:

Y (n, i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
N

Ni
−

√
Ni

N
yn = i.

−
√

Ni

N
otherwise.

(5)

This algorithm has the capability of minimizing the trace of BTSK
wB that

corresponds to the intra-class distance and maximizing the trace of BTSK
b B

that corresponds to the inter-class distance. In this way, KDA is capable of
maximizing the separability of the samples in the dimensionality reduced space
as described mathematically in the following equation:

Bkda = arg max
B

{
Tr

((
BTSW

KB
)−1

BTSb
KB

)}
. (6)

3 Similarity Based Model

The Similarity-based modelling, or simply SBM, is a nonparametric empirical
modelling method that uses pattern recognition from historical data to generate
estimates of the current values of each feature (dimension) in a set of feature
vectors [19]. The SBM can be used as a classifier itself, or as an auxiliary model
to generate features to train a further classifier. This is the case of the present
work where the SBM provides the feature vectors to the random forest classifier.
The key aspect within the use of the SBM is the possibility of reduction the
feature vectors quantity still keeping the classification accuracy and performance
by selecting the most important vectors in terms of its capacity to represent a
given class [10]. As presented in [10], in the SBM methodology a system state
at a time n is given by a vector:
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xn = [xn(1), xn(2), . . . , xn(M)]T , (7)

where M is the number of different features.
After gathering L instances of xn , a L×M matrix D = [x1,x2, . . . ,xL]T is

created storing historical data of xn representing a state space or a class.
The selection of the most representative feature vectors is evaluated by a

linear combination with all states contained in D, that is:

x̂n = DTwn, (8)

where

wn =
(
D ⊗ DT

)−1
(D ⊗ xn) (9)

= G−1an, (10)

where operator ⊗ represents a similarity function.
These similarity functions s(xi,xj) can quantify the similarity between two

vectors xi and xj , for 0 ≤ s(xi,xj) ≤ 1. The closer s(xi,xj) is to 0, the less xi

is similar to xj . Therefore in Eq. (10), an gives us the similarity between the
current state and the class representative state in D, and G provides weights to
transform matrix an for each state in D. A special case is when G = I which is
called auto-associative kernel regression (AAKR). In this case if xn belongs to
D, x̂n = xn only for one state in D.

One example of a similarity function is the inverse Euclidean similarity given
by [20]:

s(xi,xj) =
1

1 + γ||xi − xj ||p
. (11)

By doing so, a similarity threshold must be evaluated and defined, for exam-
ple, s(xi,xj) ≥ 0.7, which means a reduced feature vectors space will remain
with the most representative vectors for that given class and then this new state
space is further provided as a training set to the random forest classifier.

4 Fault Emulator System

The experimental system used to simulate fault scenarios was based on the
equipment known as alignment/balance vibration trainer (ABVT) as shown in
Fig. 1. This equipment is commonly used for the study of usual fault problems in
rotary machines in a controlled environment. This type of system is very useful,
since the study of real machine failures in full operation is very costly, especially
for the industrial scenario.
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Fig. 1. Alignment balance vibration trainer.

4.1 Equations of Motion

In order to develop a dynamic model of the ABVT system, a rotor-shaft-bearing
system shall be considered. For that, the equations of motion for individual
disc and shaft are derived in a frame attached to the base of the system using
Lagrange equation. Considering the kinetic energy of a rigid disc, the respective
kinetic energy, strain energy due to bending and Rayleigh dissipation function
due to viscous material damping of the flexible shaft, the kinetic energy of the
unbalance mass associated with the disc and the force applied on the rotor from
the bearings due to the movement of the shaft relative to them, the equations
of motion for the considered system are obtained [21]:

Mrq̈+Dcq̇+Kq = f , (12)

where Mr is the assembled inertia matrix, Dc is the assembled matrix coef-
ficient to global velocity vector including gyroscopic, Coriolis, damping effects
representation, and K is the assembled matrix coefficient to global displacement
vector including bending stiffness, circulatory, parametric stiffness matrices due
to base motion and the bearing stiffness. f is a load vector containing the effects
of mass unbalance, and q is the displacement vector for disc and shaft nodes.

4.2 Critical Speed

A critical speed of the system is the angular speed which matches one of its
natural frequencies. However, finding the natural frequencies of a stationary
rotor is not enough to determine the critical speed, once the natural frequency
of the rotor depends on the rotor angular speed. Therefore, it is important to
compute the natural frequency by considering the effect of the rotor.



Severity in Rotating Machines 151

Fig. 2. Rotor positioning scheme.

The main characteristics of the ABVT are: it has a direct current motor with
a power of 183.8 W, its range of speed varies in the range of [700; 3780] RPM,
the length of its shaft is 520mm and the diameter of it is 16 mm. About the
rotor, its thickness is 16 mm, its diameter is 152.4 mm, and as presented in the
Fig. 2, it is mounted in between two bearings with a thickness of 12mm and
distance of bearing spacing (L) of 390 mm. Neglecting the dissipative effects
and the free vibration of the shaft and rotor, the Eq. (13) became:

Msq̈+Ksq = 0. (13)

Assuming a modal solution for the Eq. (13),

q = aeiωt, (14)

yields the eigenvalue problem
[
−ω2Ms +Ks

]
a = 0, (15)

from which the approximate natural frequencies, eigenvectors and approximate
eigenfunctions can be obtained considering ω as the angular velocity and a as a
vector of the same size of q with scalar elements. For the presented characteris-
tics and considering the developed Eqs. (13, 14 and 15), the natural frequencies
are obtained (Table 1).

Table 1. Natural frequencies.

Modes Natural frequency (Hz)

1 64.52

2 65.8

3 248.07

4 474.12

5 1053.22

6 1063.94
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5 Features Extraction

Feature extraction is useful for the recognition of failures in rotating machine
bearings because it reduces the complexity of the learning problem for the clas-
sification algorithm [22].

Feature extraction has the great advantages to drastically reducing the size
of the information vector compared to the number of samples in the time series.
An excessively large vector hampers the task of learning the classifier affecting
system performance. In addition, this stage of the process allows the use of a
vector with greater discrimination capacity of the faults classes than that if
obtained using in the original time series [11].

The vibration signals are acquired by piezoelectric accelerometers in the axial,
radial and tangential directions of the motor. These are processed with the pur-
pose of extracting the characteristics of the signals that are able to differentiate
the failures types.

5.1 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an algorithm capable of calculating the
Discrete Fourier Transform (DFT) efficiently, decreasing the amount of arith-
metic operations to be performed. k is the frequency index relative to Ω0, where
Ω0 = 2π/N is the fundamental frequency. The discrete frequency Ω of the DFT
spectrum is obtained by kΩ0. The Eq. (16) calculates the DFT.

X[k] =
∞∑

−∞
x [n] e−jkΩ0n, (16)

where X[k] represents the signal in the discrete frequency domain, x[n] is the
signal in the discrete time domain, n is the number of samples and N is the
number of samples of x[n].

5.2 Kurtosis

Kurtosis is defined as the fourth-order central moment. It is used to recognize
impulsive vibration signals, because it is robust when used to classify noisy
signals [23]. Equation (17) represents the calculation of the kurtosis K(u) of a
random variable u.

K(u) =
E[u − µ]4

σ4
, (17)

where E[·] is the expected value operator, µ is the mean E[u] and σ is the
standard deviation

√
E[(u − µ)2].
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5.3 Entropy

The entropy can be understood as a measure capable of evaluating the degree
of unpredictability of a random variable. Equation (18) shows the calculation of
the entropy H(u) for a discrete random variable.

H(u) = −
C−1∑

i=0

p(ui) · log(p(ui)), (18)

where p(ui) is the probability density of the discrete random variable u at ui, ui

is the i-th value of u and 0 < C < ∞ is the number of values of u.

5.4 Feature Vector

For each signal that comes from the accelerometers positioned in the axial, radial
and tangential directions of the closest and farther bearings from the motor,
using the FFT, three characteristics were obtained that correspond to the value
of the spectrum amplitude of the frequencies Rf (motor rotation frequency),
2Rf and 3Rf [22], totalizing 18 amplitude values.

For each accelerometer signal, kurtosis and entropy were also calculated,
yielding 12 additional characteristics, which were kurtosis of the vibration signals
in the axial, radial and tangential direction of the next bearing; kurtosis of the
vibration signals in the axial, radial and tangential direction of the bearing away;
entropy of the vibration signals in the axial, radial and tangential direction of the
next bearing; entropy of the vibration signals in the axial, radial and tangential
direction of the bearing away.

The rotation frequency of the motor was also obtained through the FFT
of the tachometer signal, totalizing 31 features in the feature vector such as
proposed in [22].

6 Classification

The random forest is a powerful machine learning algorithm which can be used
for either regression and classification that creates an ensemble of decision trees
during the training phase. This technique has been proved as an excellent tool to
defect detection and prediction [11,22]. At the present work the random forest
is used as a classifier. This algorithm makes use of the bootstrap aggregation
or, bagging [24], statistical technique which in turn comes from the bootstrap
idea. While the bootstrap creates several subsamples from the population, the
bagging algorithm makes several subsamples from the same sample which is the
training set containing the feature vectors with its respective output classes.

Each feature vector creates or “grows” one decision tree, which means the
algorithm can create hundreds or thousands of decision trees. That is the reason
of the name “forest”. As the quantity of subsets are increased, the possibility
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of overfitting the model decreases. When a new vector comes during the test
phase each tree will points to a class and a voting procedure is than executed to
determine final random forest result which will be the most voted class among
all the trees.

The decision trees are known as naive classifiers, it means small variations
in the training set can cause significant changes in the classifier balance and
thus the bagging procedure comes to mitigate this problem [12], and aims to
reduce variance [24]. This procedure however is not completely efficient, because
every feature in the vector may cause same influence when a new split is made
during the tree creation phase. This can result in quite similar or correlated
trees. To avoid this problem the random forest algorithm leaves one feature
out randomly to ensure high uncorrelated trees. As an example using a vector
with a set of feature dimensions {f0; . . . ; fL−1}, one is removed, for instance, fi,
making that dimension null, φi, thus the resulting dimensionality reduced vector
is represented by {f0; ...;φi; ...; fL−1}, as shown in Fig. 3.

Decision Tree Decision Tree Decision Tree

Fig. 3. Random forest algorithm diagram.

In a three classes classification problem, the confusion matrix is a 3 × 3
matrix as shown in Table 2. The number of elements of class Ci is given by
Ni = m1i +m2i +m3i. Ci is the class to be recognized by the classifier and for
practical purposes in this work, it represents the severity levels low, medium and
high (L, M and H), which will be defined in Sect. 7.
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Table 2. Confusion matrix of a three classes classification problem.

Output Target classes

C1 C2 C3

C1 m11 m12 m13

C2 m21 m22 m23

C3 m31 m32 m33

A typical tune process for the random forest classification algorithm is choos-
ing the number of trees the maximizes the classification performance. There are
several ways of measuring the performance of classification algorithms and the
one used in this work is the average intra-class accuracy η, given by

η =
1
3

(
m11

N1
+

m22

N2
+

m33

N3

)
. (19)

7 Training and Test Sets

There are 333 different fault scenarios in the database with different rotating
speeds. These scenarios had 7 different levels obtained with 7 different unbal-
ancing masses: 6 g (49 fault scenarios), 10 g (48 scenarios), 15 g (48 scenarios),
20 g (49 scenarios), 25 g (47 scenarios), 30 g (47 scenarios), 35 g (45 scenarios).
The resulting unbalancing fault severity effects were separated into 3 discrete
levels: H (High), M (Medium) and L (Low), then creating the output classes

400
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0 
50                100                 150                 200                 250                 300                350                400
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15 g 
20 g 
25 g 
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35 g

Fig. 4. Unbalancing force × angular velocity for all unbalancing masses separately.
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of the classifier following similar reasoning as [25]. This classes separation was
based on the magnitude of the unbalancing force represented by equation

Fc = mrω2, (20)

in which m is the unbalancing mass, r is the mass distance from the spin axis
in the center of the inertial disk, and ω is the angular velocity [12].

The Fc ×m curves for each individual mass are shown in Fig. 4. As in exper-
iment 4 from [12], the severity levels are divided as L (0 ≤ Fc < 39.47 N), M
(39.47 ≤ Fc < 118.43 N) and H (Fc ≥ 118.43 N), which leads to 31% of the data
in L class, 38% in M class and 31% in H class.

The separation of the data set for this work was done using cross-validation,
which is a statistical technique used to estimate the performance of an algorithm
based on a prediction model. In the pattern recognition area, there are several
cross-validation methods used to asses the efficiency of the classifier independent
of the test set chosen. In this work the k-fold method with 10 folds was used.
Following this methodology, the original data set is randomly divided into 10
parts (or folds) with approximately equal sizes. 3 of these 10 parts are chosen
randomly as the test set and the other 7 parts are used as the training set.
This process leads to K = 120 possible combinations for test and training sets.
Finally, the 120 classification results as combined through simple average in order
to obtain a single result

η̄ =
1
K

K−1∑

k=0

ηk, (21)

where ηk is the average intra-class accuracy of the classification algorithm using
the k-th k-fold combination. Examples of test and training fold combinations
are shown in Fig. 5.

Fig. 5. Examples of combination of the k-fold strategy used: light square for test and
dark squares for training folds.
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8 Results and Discussion

The work in [12] used the random forest as the classification approach with the
feature vector composed by the 31 features described in Sect. 5.4. Table 3 shows
the average confusion matrix of the 120 k-fold configurations as in [12], with
η̄ = 93.73% overall classification accuracy.

Table 3. Confusion matrix of the unbalancing severity analysis as in [12].

Output Target classes (%)

L M H

L 93.32 ± 4.85 4.84 ± 3.54 0 ± 0

M 6.68 ± 4.85 92.05 ± 3.40 4.18 ± 3.89

H 0 ± 0 3.11 ± 2.62 95.83 ± 3.89

In order to improve the classification process, two different mapping
approaches were applied on the vector space of the unbalancing severity analysis
database: SBM and KDA.

8.1 Experiment 1: SBM + Random Forest

The research described in [10] used SBM together with random forest was used
to improve the classification of the whole MaFaulDa database. The same method
was applied to the unbalancing severity analysis problem of [12].

Table 4. SBM + random forest confusion matrix of the unbalancing severity analysis.

Output Target classes (%)

L M H

L 94.59 ± 4.35 6.44 ± 4.18 0.00 ± 0.00

M 4.23 ± 3.28 92.13 ± 3.24 3.51 ± 3.31

H 0.00 ± 0.00 2.99 ± 2.58 95.70 ± 4.11

Table 4 shows the result of SBM combined with random forest in the unbal-
ancing severity analysis problem, reaching η̄ = 94.14% overall classification accu-
racy, which is 0.41% greater than the results achieved by just using random forest
with the original feature vector space. This can be explained by the already high
accuracy of random forest and the low number of subjects for each class.
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8.2 Experiment 2: KDA + Random Forest

Another approach used to map the feature vector space before applying to the
random forest was the KDA method. Table 5 shows the result of KDA com-
bined with random forest in the unbalancing severity analysis problem, reaching
η̄ = 93.31% overall classification accuracy, which is 0.42% less than the results
achieved by just using random forest with the original feature vector space. The
advantage of using KDA is the dimensionality reduction from 31 dimensions used
on the original random forest approach, to 6 dimensions used in the combination
of KDA and random forest.

Table 5. KDA + random forest confusion matrix of the unbalancing severity analysis.

Output Target classes (%)

L M H

L 93.03 ± 4.44 7.22 ± 4.26 0.00 ± 0.00

M 6.81 ± 4.25 89.58 ± 4.14 2.62 ± 3.30

H 0.16 ± 0.77 3.20 ± 2.61 97.33 ± 3.35

9 Conclusion

This work proposes a modification in a classification method to further improve
it’s capacity to discriminate the severity of the unbalancing fault of a rotating
machine considering the angular velocity, by transforming the feature space using
kernel discriminant analysis (KDA).

Experimental results show that by combining KDA with random forest, the
discrimination in L, M and H of the original method proposed in [12] is preserved
with a reduction in dimensionality from 31 to 6, a reduction of almost 81%. Also
a sightly improvement in accuracy was observed using KDA with random forest,
which may not impact on the system performance statistically. The problem
configuration was guided to a well balanced amount of class elements leading to a
less challenging task and did not take the full benefits of the non-linear techniques
applied. The usage of mechanical standards that consider the unbalancing fault
in rotating machines could provide more significance to the experiment also
making the task more challenging.

The categorization of fault severity in Low, Medium and High is a first step
in the development of a predictive maintenance system. In order to do so, other
types of fault such as misalignment and bearing defects should be studied and a
categorization with more divisions or a numerical estimation for severity should
be also studied.
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