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Abstract—This work explores and compares the plethora of
metrics for the performance evaluation of object-detection algo-
rithms. Average precision (AP), for instance, is a popular metric
for evaluating the accuracy of object detectors by estimating the
area under the curve (AUC) of the precision × recall relationship.
Depending on the point interpolation used in the plot, two
different AP variants can be defined and, therefore, different
results are generated. AP has six additional variants increasing the
possibilities of benchmarking. The lack of consensus in different
works and AP implementations is a problem faced by the academic
and scientific communities. Metric implementations written in
different computational languages and platforms are usually
distributed with corresponding datasets sharing a given bounding-
box description. Such projects indeed help the community with
evaluation tools, but demand extra work to be adapted for other
datasets and bounding-box formats. This work reviews the most
used metrics for object detection detaching their differences,
applications, and main concepts. It also proposes a standard
implementation that can be used as a benchmark among different
datasets with minimum adaptation on the annotation files.

Keywords—object-detection metrics, average precision, object-
detection challenges, bounding boxes.

I. INTRODUCTION

Object detection is an extensively studied topic in the field
of computer vision. Different approaches have been employed
to solve the growing need for accurate object detection mod-
els [1]. The Viola-Jones framework [2], for instance, became
popular due to its successful application in the face-detection
problem [3], and was later applied to different subtasks such as
pedestrian [4] and car [5] detections. More recently, with the
popularization of the convolutional neural networks (CNN) [6]–
[9] and GPU-accelerated deep-learning frameworks, object-
detection algorithms started being developed from a new per-
spective [10], [11]. Works as Overfeat [12], R-CNN [13], Fast
R-CNN [14], Faster R-CNN [15], R-FCN [16], SSD [17] and
YOLO [18]–[20] highly increased the performance stantards
on the field. World famous competitions such as VOC PAS-
CAL Challenge [21], COCO [22], ImageNet Object Detection
Challenge [23], and Google Open Images Challenge [24] have
as their top object-detection algorithms methods inspired on
the aforementioned works. Differently from algorithms such as
the Viola-Jones, CNN-based detectors are flexible enough to be
trained with several (hundreds or even a few thousands) classes.

A detector outcome is commonly composed of a list of
bounding boxes, confidence levels and classes, as seen in
Figure 1. However, the standard output-file format varies a
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Fig. 1: Examples of detections performed by YOLO [20] in
different datasets. (a) PASCAL VOC; (b) personal dataset; (c)
COCO. Besides the bounding box coordinates of a detected
object, the output also includes the confidence level and its
class.

lot for different detection algorithms. Bounding-box detections
are mostly represented by their top-left and bottom-right co-
ordinates (xini, yini, xend, yend), with a notable exception being
the YOLO [18]–[20] algorithm, that differs from the others by
outlining the bounding boxes by their center coordinates, width,
and height
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Different challenges, competitions, and hackathons [21],
[23]–[27] attempt to assess the performance of object de-
tections in specific scenarios by using real-world annotated
images [28]–[30]. In these events, participants are given a
testing nonannotated image set in which objects have to be
detected by their proposed works. Some competitions provide
their own (or 3rd-party) source code, allowing the participants
to evaluate their algorithms in an annotated validation image978-1-7281-7539-3/20/$31.00 ©2020 IEEE



set before submitting their testing-set detections. In the end,
each team sends a list of bounding-boxes coordinates with their
respective classes and (sometimes) their confidence levels to be
evaluated.

In most competitions, the average precision (AP) and its
derivations are the metrics adopted to assess the detections
and thus rank the teams. The PASCAL VOC dataset [31] and
challenge [21] provide their own source code to measure the
AP and the mean AP (mAP) over all object classes. The City
Intelligence Hackathon [27] uses the source code distributed
in [32] to rank the participants also on AP and mAP. The Ima-
geNet Object Localization challenge [23] does not recommend
any code to compute their evaluation metric, but provides a
pseudo-code explaining it. The Open Images 2019 [24] and
Google AI Open Images [26] challenges use mAP, referencing
a tool to evaluate the results [33], [34]. The Lyft 3D Object
Detection for Autonomous Vehicles challenge [25] does not
reference any external tool, but uses the AP averaged over 10
different thresholds, the so-called AP@50:5:95 metric.

This work reviews the most popular metrics used to evalu-
ate object-detection algorithms, including their main concepts,
pointing out their differences, and establishing a comparison be-
tween different implementations. In order to introduce its main
contributions, this work is divided into the following topics:
Section II explains the main performance metrics employed
in the field of object detection and how the AP metric can
produce ambiguous results; Section III describes some of the
most known object detection challenges and their employed
performance metrics, whereas Section IV presents a project
implementing the AP metric to be used with any annotation
format.

II. MAIN PERFORMANCE METRICS

Among different annotated datasets used by object detection
challenges and the scientific community, the most common
metric used to measure the accuracy of the detections is the AP.
Before examining the variations of the AP, we should review
some concepts that are shared among them. The most basic are
the ones defined below:
• True positive (TP): A correct detection of a ground-truth

bounding box;
• False positive (FP): An incorrect detection of a nonexistent

object or a misplaced detection of an existing object;
• False negative (FN): An undetected ground-truth bounding

box;
It is important to note that, in the object detection context,

a true negative (TN) result does not apply, as there are infinite
number of bounding boxes that should not be detected within
any given image.

The above definitions require the establishment of what a
“correct detection” and an “incorrect detection” are. A common
way to do so is using the intersection over union (IOU). It is
a measurement based on the Jaccard Index, a coefficient of
similarity for two sets of data [35]. In the object detection
scope, the IOU measures the overlapping area between the

predicted bounding box Bp and the ground-truth bounding box
Bgt divided by the area of union between them, that is

J(Bp, Bgt) = IOU =
area(Bp ∩Bgt)
area(Bp ∪Bgt)

, (1)

as illustrated in Figure 2.

Fig. 2: Intersection Over Union (IOU).

By comparing the IOU with a given threshold t, we can
classify a detection as being correct or incorrect. If IOU ≥ t
then the detection is considered as correct. If IOU < t the
detection is considered as incorrect.

Since, as stated above, the true negatives (TN) are not used in
object detection frameworks, one refrains to use any metric that
is based on the TN, such as the TPR, FPR and ROC curves [36].
Instead, the assessment of object detection methods is mostly
based on the precision P and recall R concepts, respectively
defined as

P =
TP

TP + FP
=

TP
all detections

, (2)

R =
TP

TP + FN
=

TP
all ground truths

. (3)

Precision is the ability of a model to identify only relevant
objects. It is the percentage of correct positive predictions.
Recall is the ability of a model to find all relevant cases (all
ground-truth bounding boxes). It is the percentage of correct
positive predictions among all given ground truths.

The precision × recall curve can be seen as a trade-off
between precision and recall for different confidence values
associated to the bounding boxes generated by a detector. If the
confidence of a detector is such that its FP is low, the precision
will be high. However, in this case, many positives may be
missed, yielding a high FN, and thus a low recall. Conversely,
if one accepts more positives, the recall will increase, but the FP
may also increase, decreasing the precision. However, a good
object detector should find all ground-truth objects (FN = 0 ≡
high recall) while identifying only relevant objects (FP = 0 ≡
high precision). Therefore, a particular object detector can
be considered good if its precision stays high as its recall
increases, which means that if the confidence threshold varies,
the precision and recall will still be high. Hence, a high area
under the curve (AUC) tends to indicate both high precision
and high recall. Unfortunately, in practical cases, the precision
× recall plot is often a zigzag-like curve, posing challenges to
an accurate measurement of its AUC. This is circumvented by
processing the precision × recall curve in order to remove the
zigzag behavior prior to AUC estimation. There are basically



two approaches to do so: the 11-point interpolation and all-
point interpolation.

In the 11-point interpolation, the shape of the precision
× recall curve is summarized by averaging the maximum
precision values at a set of 11 equally spaced recall levels [0,
0.1, 0.2, ... , 1], as given by

AP11 =
1

11

∑
R∈{0,0.1,...,0.9,1}

Pinterp(R), (4)

where
Pinterp(R) = max

R̃:R̃≥R
P (R̃). (5)

In this definition of AP, instead of using the precision
P (R) observed at each recall level R, the AP is obtained
by considering the maximum precision Pinterp(R) whose recall
value is greater than R.

In the all-point interpolation, instead of interpolating only 11
equally spaced points, one may interpolate through all points
in such way that:

APall =
∑
n

(Rn+1 −Rn)Pinterp(Rn+1), (6)

where
Pinterp(Rn+1) = max

R̃:R̃≥Rn+1

P (R̃). (7)

In this case, instead of using the precision observed at
only few points, the AP is now obtained by interpolating the
precision at each level, taking the maximum precision whose
recall value is greater or equal than Rn+1.

The mean AP (mAP) is a metric used to measure the
accuracy of object detectors over all classes in a specific
database. The mAP is simply the average AP over all classes
[15], [17], that is

mAP =
1

N

N∑
i=1

APi, (8)

with APi being the AP in the ith class and N is the total
number of classes being evaluated.

A. A Practical Example

As stated previously, the AP is calculated individually for
each class. In the example shown in Figure 3, the boxes
represent detections (red boxes identified by a letter - A, B,
..., Y) and the ground truth (green boxes) of a given class.
The percentage value drawn next to each red box represents
the detection confidence for this object class. In order to
evaluate the precision and recall of the 24 detections among
the 15 ground-truth boxes distributed in seven images, an IOU
threshold t needs to be established. In this example, let us
consider as a TP detection box one having IOU ≥ 30%. Note
that each value of IOU threshold provides a different AP metric,
and thus the threshold used must always be indicated.

Table I presents each detection ordered by their confidence
level. For each detection, if its area overlaps 30% or more of
a ground truth (IOU ≥ 30%), the TP column is identified as

Fig. 3: Example of 24 detections (red boxes) performed by an
object detector aiming to detect 15 ground-truth objects (green
boxes) belonging to the same class.

1; otherwise it is set to 0 and it is considered as FP. Some
detectors can output multiple detections overlapping a single
ground truth (e.g. detections D and E in Image 2; G, H and
I in Image 3). For those cases the detection with the highest
IOU is considered a TP and the others are considered as FP,
as applied by the PASCAL VOC 2012 challenge. The columns
Acc TP and Acc FP accumulate the total amount of TP and
FP along all the detections above the corresponding confidence
level. Figure 4 depicts the calculated precision and recall values
for this case.

TABLE I: Computation of Precision and Recall Values for IOU
threshold = 30%

detection confidence TP FP acc TP acc FP precision recall

R 95% 1 0 1 0 1 0.0666
Y 95% 0 1 1 1 0.5 0.0666
J 91% 1 0 2 1 0.6666 0.1333
A 88% 0 1 2 2 0.5 0.1333
U 84% 0 1 2 3 0.4 0.1333
C 80% 0 1 2 4 0.3333 0.1333
M 78% 0 1 2 5 0.2857 0.1333
F 74% 0 1 2 6 0.25 0.1333
D 71% 0 1 2 7 0.2222 0.1333
B 70% 1 0 3 7 0.3 0.2
H 67% 0 1 3 8 0.2727 0.2
P 62% 1 0 4 8 0.3333 0.2666
E 54% 1 0 5 8 0.3846 0.3333
X 48% 1 0 6 8 0.4285 0.4
N 45% 0 1 6 9 0.4 0.4
T 45% 0 1 6 10 0.375 0.4
K 44% 0 1 6 11 0.3529 0.4
Q 44% 0 1 6 12 0.3333 0.4
V 43% 0 1 6 13 0.3157 0.4
I 38% 0 1 6 14 0.3 0.4
L 35% 0 1 6 15 0.2857 0.4
S 23% 0 1 6 16 0.2727 0.4
G 18% 1 0 7 16 0.3043 0.4666
O 14% 0 1 7 17 0.2916 0.4666

As mentioned above, each interpolation method yields a
different AP result, as given by (Figure 5):

AP11 =
1

11
(1 + 0.6666 + 0.4285 + 0.4285 + 0.4285)

AP11 = 26.84%,



Fig. 4: Precision x Recall curve with values calculated for each
detection in Table I.

and (Figure 6):

APall = 1 ∗ (0.0666− 0) + 0.6666 ∗ (0.1333− 0.0666)

+ 0.4285 ∗ (0.4− 0.1333) + 0.3043 ∗ (0.4666− 0.4)

APall = 24.56%.

Fig. 5: Precision × Recall curves of points from Table I using
the 11-point interpolation approach.

From what we have seen so far, benchmarks are not truly
comparable if the method used to calculate the AP is not
reported. Works found in the literature [1], [9], [12]–[20], [37]
usually neither mention the method used nor reference the
adopted tool to evaluate their results. This problem does not
occur much often in challenges, as it is a common practice
to have a reference software tool included in order for the
participants to evaluate their results. Also, it is not rare to
occur cases where a detector sets the same confidence level
for different detections. Table I, for example, illustrates that
detections R and Y obtained the same confidence level (95%).
Depending on the criterion used by a certain implementation,
one or other detection can be sorted as the first detection in the
table, directly affecting the final result of an object-detection
algorithm. Some implementations may consider the order that

Fig. 6: Precision × Recall curves of points from Table I
applying interpolation with all points.

each detection was reported as the tiebreaker (usually one or
more evaluation files contain the detections to be evaluated),
but in general there is no common consensus by the evaluation
tools.

III. OBJECT-DETECTION CHALLENGES AND THEIR AP
VARIANTS

Constantly, new techniques are being developed and new
different state-of-the-art object-detection algorithms are arising.
Comparing their results with different works is not an easy
task. Sometimes the applied metrics vary or the implementation
used by the different authors may not be the same, generating
dissimilar results. This section covers the main challenges and
their most popular AP variants found in the literature.

The PASCAL VOC [31] is an object-detection challenge
released in 2005. From 2005 to 2012, a new version of the
Pascal VOC was released with increased numbers of images
and classes, starting at four classes, reaching 20 classes in
its last update. The PASCAL VOC competition still accepts
submissions, revealing state-of-the-art algorithms for object
detections ever since. In this trail, the challenge applies the
11-interpolated precision (see Section II) and uses the mean
AP over all of its classes to rank the submission performances,
as implemented by the provided development kit.

The Open Images 2019 challenge [24] in its object-detection
track uses the Open Images Dataset [29] containing 12.2 M
annotated bounding boxes across 500 object categories on
1.7 M images. Due to its hierarchical annotations, the same
object can belong to a main class and multiple sub-classes
(e.g. ‘helmet’ and ‘football helmet’). Because of that, the users
should report the class and subclasses of a given detection. If
somehow only the main class is correctly reported for a detected
bounding box, the unreported subclasses affect negatively the
score, as it is counted as a false negative. The metric employed
by the aforementioned challenge is the mean AP over all classes
using the Tensorflow Object Detection API [33].

The COCO detection challenge (bounding box) [22] is a
competition which provides bounding-box coordinates of more
than 200,000 images comprising 80 object categories. The



submitted works are ranked according to metrics gathered into
four main groups.
• AP: The AP is evaluated with different IOUs. It can be

calculated for 10 IOUs varying in a range of 50% to 95%
with steps of 5%, usually reported as AP@50:5:95. It also
can be evaluated with single values of IOU, where the
most common values are 50% and 75%, reported as AP50
and AP75 respectively;

• AP Across Scales: The AP is determined for objects in
three different sizes: small (with area < 322 pixels),
medium (with 322 < area < 962 pixels), and large (with
area > 962 pixels);

• Average Recall (AR): The AR is estimated by the maxi-
mum recall values given a fixed number of detections per
image (1, 10 or 100) averaged over IOUs and classes;

• AR Across Scales: The AR is determined for objects in
the same three different sizes as in the AP Across Scales,
usually reported as AR-S, AR-M, and AR-L, respectively;

Tables II and III present results obtained by different object
detectors for the COCO and PASCAL VOC challenges, as given
in [20], [38]. Due to different bounding-box annotation formats,
researchers tend to report only the metrics supported by the
source code distributed with each dataset. Besides that, works
that use datasets with other annotation formats [39] are forced
to convert their annotations to PASCAL VOC’s and COCO’s
formats before using their evaluation codes.

TABLE II: Results using AP variants obtained by different
methods on COCO dataset [40].

methods AP@50:5:95 AP50 AP75 AP-S AP-M AP-L

Faster R-CNN with ResNet-101 [9], [15] 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN with FPN [15], [41] 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN by G-RMI [15], [42] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN with TDM [15], [43] 36.8 57.7 39.2 16.2 39.8 52.1

YOLO v2 [19] 21.6 44.0 19.2 5.0 22.4 35.5
YOLO v3 [20] 33.0 57.9 34.4 18.3 35.4 41.9

SSD513 with ResNet-101 [9], [17] 31.2 50.4 33.3 10.2 34.5 49.8
DSSD513 with ResNet-101 [9], [44] 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet [40] 39.1 59.1 42.3 21.8 42.7 50.2

TABLE III: Results using AP variant (mAP) obtained by
different methods on PASCAL VOC 2012 dataset [38].

methods mAP

Faster R-CNN * [15] 70.4
YOLO v1 [18] 57.9

YOLO v2 ** [19] 78.2
SSD300 ** [17] 79.3
SSD512 ** [17] 82.2

(*) trained with PASCAL VOC dataset images only, while (**) trained with
COCO dataset images.

The metric AP50 in Table II is calculated in the same way as
the metric mAP in Table III, but as the methods were trained
and tested in different datasets, one obtains different results in
both evaluations. Due to the need of conversions between the
bounding-box annotations among different datasets, researchers
in general do not evaluate all methods with all possible metrics.
In practice, it would be more meaningful if methods trained and
tested with one dataset (PASCAL VOC, for instance) could also

be evaluated by the metrics employed in other datasets (COCO,
for instance).

IV. AN OPEN-SOURCE PERFORMANCE METRIC
REPOSITORY

In order to help other researchers and the academic com-
munity to obtain trustworthy results that can be comparable re-
gardless the detector, the database, or the format of the ground-
truth annotations, a library was developed in Python with the
AP metric that can be extended to its variations. Easy-to-use
functions implement the same metrics used as benchmark by
the most popular competitions and object-detection researches.
The proposed implementation does not require modifications
of the detection model to match complicated input formats,
avoiding conversions to XML or JSON files. To assure the
accuracy of the results, the implementation followed to the
letter the definitions and our results were carefully compared
against the official implementations and the results are precisely
the same. The variations of the AP metric such as mAP, AP50,
AP75 and AP@50:5:95 using the 11-point or the all-point
interpolations can be obtained with the proposed library.

The input data (ground-truth bounding boxes and detected
bounding boxes) format was simplified requiring a single
format to compute all AP variation metrics. The format required
is straightforward and can support the most popular detectors.
For the ground-truth bounding boxes, a single text file for each
image should be created with each line in one of the following
formats:

<class> <left> <top> <right> <bottom>
<class> <left> <top> <width> <height>

For the detections, a text file for each image should include
a line for each bounding box in one of the following formats:

<class> <confidence> <left> <top> <right> <bottom>
<class> <confidence> <left> <top> <width> <height>

The second options support YOLO’s output bounding-box
formats. Besides specifying the input formats of the bounding
boxes, one can also set the IOU threshold used to consider
a TP (useful to calculate the metrics AP@50:5:95, AP50 and
AP75) and the interpolation method (11-point interpolation or
interpolation with all points). The tool will output the plots as
in Figures 5 and 6, the final mAP and the AP for each class,
giving a better view of the results for each class. The tool
also provides an option to generate the output images with the
bounding boxes drawn on it as shown in Figure 1.

The project distributed with this paper can be ac-
cessed at: https://github.com/rafaelpadilla/Object-Detection-
Metrics. So far, our framework has helped researchers to obtain
AP metrics and its variations in a simple way, supporting the
most popular formats used by datasets, avoiding conversions
to XML or JSON files. The proposed tool has been used as
the official tool in the competition [27], adopted in 3rd-party
libraries such as [45] and used by many other works as in [46]–
[48].
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[35] P. Jaccard, “Étude comparative de la distribution florale dans une portion
des alpes et des jura,” Bulletin de la Societe Vaudoise des Sciences
Naturelles, vol. 37, pp. 547–579, 1901.

[36] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a
receiver operating characteristic (roc) curve.” Radiology, vol. 143, no. 1,
pp. 29–36, 1982.

[37] D. Yoo, S. Park, J.-Y. Lee, A. S. Paek, and I. So Kweon, “Attentionnet:
Aggregating weak directions for accurate object detection,” in IEEE
International Conference on Computer Vision, 2015, pp. 2659–2667.

[38] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep
learning: A review,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 30, no. 11, pp. 3212–3232, 2019.

[39] “An annotated video database for abandoned-object detection in a clut-
tered environment,” in International Telecommunications Symposium,
2014, pp. 1–5.

[40] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in IEEE International Conference on Computer
Vision, 2017, pp. 2980–2988.

[41] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 2117–2125.

[42] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama et al., “Speed/accuracy trade-offs for
modern convolutional object detectors,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 7310–7311.

[43] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta, “Beyond skip
connections: Top-down modulation for object detection,” arXiv, 2016.

[44] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “Dssd: Deconvo-
lutional single shot detector,” arXiv, 2017.

[45] C. R. I. of Montreal (CRIM). thelper package. [Online]. Available:
https://thelper.readthedocs.io/en/latest/thelper.optim.html

[46] C. Adleson and D. C. Conner, “Comparison of classical and cnn-based
detection techniques for state estimation in 2d,” Journal of Computing
Sciences in Colleges, vol. 35, no. 3, pp. 122–133, 2019.

[47] A. Borji and S. M. Iranmanesh, “Empirical upper-bound in object
detection and more,” arXiv, 2019.

[48] D. Caschili, M. Poncino, and T. Italia, “Optimization of cnn-based
object detection algorithms for embedded systems,” Masters dissertation,
Politecnico di Torino, 2019.


