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Abstract

This paper presents our system submitted to the Task 1 of the
2020 edition of the voice conversion challenge (VCC), based on
CycleGAN to convert mel-spectograms and MelGAN to syn-
thesize converted speech. CycleGAN is a GAN-based mor-
phing network that uses a cyclic reconstruction cost to allow
training with non-parallel corpora. MelGAN is a GAN based
non-autoregressive neural vocoder that uses a multi-scale dis-
criminator to efficiently capture complexities of speech signals
and achieve high quality signals with extremely fast generation.
In the VCC 2020 evaluation our system achieved mean opinion
scores of 1.92 for English listeners and 1.81 for Japanese listen-
ers, and averaged similarity score of 2.51 for English listeners
and 2.59 for Japanese listeners. The results suggest that possi-
bly the use of neural vocoders to represent converted speech is
a problem that demand specific training strategies and the use
of adaptation techniques.

Index Terms: voice conversion, voice conversion challenge,
CycleGAN, MelGAN

1. Introduction

Voice conversion (VC) refers to the modification of an audio
signal such that the speaker’s identity is altered but the content
of the message is preserved. A system capable of such trans-
formation finds use in a variety of applications, from artistic
(e.g. as a voice acting tool), to technical (e.g. as a way to add
different voices to text-to-speech systems). To assess the state
of the art of voice conversion and support the development of
new techniques, the Voice Conversion Challenge (VCC) [1][2]
is organized at every two years. This paper presents the sys-
tem description for our submission to the 2020 edition of the
VCC [3].

The conventional method of performing VC is represent-
ing the speech signal in a different domain, such as a mel-
spectrogram, cepstral coefficients or even text [4], modifying
the representation with a machine learning algorithm, and syn-
thesizing speech from the modified representation. A large vari-
ety of techniques has been used to perform the conversion itself,
such as vector quantization [5], statistical models [6], or neu-
ral networks [7]. Advancements in deep learning have allowed
increasingly complex models to be used, such as bidirectional
Long Short-Term Memories [8], Variational Auto-Encoders [9]
or transformer networks [10].

Our VC approach is based on CycleGAN [11], a genera-
tive adversarial network (GAN) based morphing network for
datasets without paired utterances. CycleGAN has been pre-
viously used for VC [12][13], but such works only transformed
the spectral envelope of the speech in the form of mel-frequency
cepstral coefficients. We explore using CycleGAN to convert
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the whole signal by transforming mel-spectrograms, a repre-
sentation where information about timbre, pitch, and vocal tract
are all fused together. We found that CycleGAN is powerful
enough to perform conversion.

Traditionally, the synthesis of converted speech is per-
formed by a conventional vocoder, such as STRAIGHT [14]
or WORLD [15]. Recent years saw the development of neu-
ral vocoders, such as WaveNet [16] or WaveGlow [17], that use
innovative deep neural network structures and a large amount
of data to obtain very high quality synthesis. In this work we
perform the synthesis using MelGAN [18], an efficient GAN
based neural vocoder capable of obtaining high quality speech
with extremely low generation times.

2. CycleGAN based Voice Conversion

CycleGAN [11] is a non-parallel GAN based morphing system
originally designed for image-to-image conversion that can be
trained on an unpaired dataset. It is composed of a generator
G x vy, which maps signals from domain X into domain Y,
and a discriminator Dy that classifies samples as being real
samples of domain Y or not.

As a GAN, it uses an adversarial cost function:

Laav(Gx oy, Dy) = Eps,)[log Dy (Sy)]

+ Epsy)[log(1 — Dy (Gx—v (Sx)))]-
(D

The discriminator tries to minimize the cost function above,
achieving higher accuracy, while the generator tries to maxi-
mize it, i.e. to successfully deceive the discriminator.

The adversarial loss alone is not enough to train a morphing
system. It underdefines the problem, since a network that gen-
erates samples of Y while ignoring the input is a valid solution.
Even if this does not usually happen in practice, the underde-
fined cost function leads to unstable training and convergence
issues. CycleGAN'’s solution is to jointly train both the con-
version and its inverse, and use the distance between the origi-
nal signal and the signal transformed by both networks, called
cyclic consistency loss, to regularize the training. The cyclic
consistency loss is:

£CyC(GX*>Y’ GY%X) =
Epsy)llISx — Gy x(Gx—y (Sx))|1]

+Eps,) ISy — Gxoy (Gy - x(Sy)) |l
2)

In addition to the cyclic consistency loss, CycleGAN also
uses an identity loss, the distance between input and output of
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Figure 1: CycleGAN’s training architecture.

the network when the input already belongs to the target do-
main:

Lia(Gxy, Gy ox) =Eps ) [|ISx — Gy - x(Sx) 1]

+Ep(sy) [[ISy — Gx—v (Sy)ll]-
3)

Both the cyclic loss and the identity loss have similar objec-
tives: they encourage the network to find transformations that
preserve those structures that both domains have in common
and focus on transforming what is different between domains.
The full cost function is then:

L(Gxsy,Dy,Gy—x,Dx) = Lava(Gx—y, Dy)
+£adv (GY—>X7 DX) + Acycl:cyc(GX—»Y, GY_>X)
+hiatLiat(Gx oy, Gyox), @)

where hyperparameters Acyc and Aiq¢ control the weight of Lcyc
and L;qt, respectively. They cannot be too low, or the costs will
not affect the training, nor too high, or the system will tend to
learn the identity transformation. Figure 1 depicts the training
process of a CycleGAN.

2.1. Architecture and training details

The generator network is composed of a pair of strided convo-
lutional layers with stride of two; a sequence of nine residual
blocks, each composed of two convolutional layers with a skip
connection between the input of the first and the output of the
second; and a pair of transposed convolutions, upsampling the
spectogram back to its original dimensions. Each convolutional
layer is followed by instance normalization and a ReLU non-
linear activation (except the second convolution of each resid-
ual block, which lacks the latter). All convolutions are two-
dimensional.

The discriminator is a PatchGAN [19]. It is composed of
three strided convolutional layers, each followed by an instance
normalization layer and a leaky ReLU activation. The discrimi-
nator analyses the signal in windows of size 70 x 70 with stride
of 8, and the loss of the discriminator is the average loss of all
windows. To help stabilize the training, CycleGAN uses the
Least Square GAN [20]. We use Acyc = 20 and Aiq¢ = 10.

3. MelGAN based Vocoder

MelGAN [18] is a non-auto-regressive GAN-based vocoder. It
is composed of a generator network G that generates speech sig-
nals from mel-spectrograms, and a discriminator D that identi-
fies speech signals as being natural or generated.

Due to the nature of speech, where both short- and long-
term dependencies are important, designing a discriminator for
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Figure 2: Multi-scale discriminator used in the MelGAN
vocoder.

a GAN based vocoder is challenging [21]. MelGAN solves this
problem by using a multi-scale discriminator, an ensemble of
discriminators networks D;, ¢ = 1,2,..., N, each receiving
as input the signal downsampled by a factor 2°~*, allowing the
ensemble as a whole to analyse the signal using both long time
windows and wide frequency bands. This allows the genera-
tor to be trained to generate high quality samples despite each
discriminator being relatively simple. Figure 2 shows the archi-
tecture of the multi-scale discriminator.
The objective function for each discriminator is:

L(Dr) = Epo[log Dy (x)] + Eps)[log(1 — Dk(G(S)))L(S)

and the generator tries to deceive all the discriminators:

Z log(Dx(G(8)))

MelGAN also uses the feature matching loss to stabilize the
training:

K H
Lieat (G) = Ep(s %) |:E Z | D, h)
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where D,(Ch) (+) is the h-th feature map of the k-th discriminator.
The feature matching loss is the distance between equivalent
feature maps when the discriminator analyses two signals, and
can be seen as a generalization of the distance between two sig-
nals.

The generator objective function is then:

Z log(Dx (G

ﬁ(G P(S) )) + )‘featﬁfeat (G),

(®)
where Afeat 18 @ constant to weight the feature 1oss, Lieat (G).

3.1. Architecture and training details

The Generator network is fully convolutional, and is composed
of alternating upsample layers and residual stacks. The upsam-
ple layers are transposed convolutions with kernel size chosen
as a multiple of the stride to avoid checkerboard artifacts, while
the residual stacks are a series of convolutional layers with ex-
ponentially increasing dilation, similar to WaveNet [16]. The
network outputs samples directly, unlike related systems such
as WaveNet [16] or WaveRNN [22], which output a parameter-
ized distribution which must be sampled.



CycleGAN | Sy

Generator

MelGAN A
Generator

Sx—-n

Figure 3: Conversion process.

The Discriminator is similar to PatchGAN [19], consisting
solely of a series of strided convolutions. The result is a se-
quence of scores corresponding to windows of the signal. The
total loss is then the average loss over the windows. The win-
dows have length of around 5000 samples and hop size of 256
samples.

For both the discriminator and the generator, each layer
is subjected to weight normalization [23], and after each layer
there is a Leaky ReLU non-linear activation. We use the Least
Squares GAN instead of the traditional GAN loss to help stabi-
lize the training.

To train the network we used a model pre-trained on the
CSTR VCTK Corpus [24], a dataset consisting of 110 speak-
ers and around 40 hours of audio. We then adapted the model
with a dataset consisting of the VCC training set and a randomly
chosen subset of the VCTK Corpus, such that the average num-
ber of utterances per speaker in the two datasets is similar. The
combined dataset is 10 times larger than the VCC dataset.

4. Conversion Process

Figure 3 shows the full conversion process. Signal sx from
speaker X is first transformed into its mel-spectrogram rep-
resentation Sx. This mel-spectrogram is then converted by
the CycleGAN generator G'x vy into the mel-spectrogram Sy,
which is then synthesized by the MelGAN generator into the
converted signal sy .

5. Evaluation
5.1. Dataset

The Task 1 dataset consists of 8 English speakers, 4 source and
4 target. Each set contains 2 male and 2 female speakers. The
training set had 70 utterances per speaker. 20 of the phrases
were common between source and target speakers, while the
rest were distinct. We reserved 3 utterances per speaker from
the parallel set for validation, using the rest to train CycleGAN
and adapt MelGAN. CycleGAN was trained for ~30 min per
pair of speakers on an NVIDIA GTX 1080 Ti and MelGAN was
trained for ~12 days on the VCTK dataset, plus ~15 hours on
the extended VCC dataset on a pair of NVIDIA GTX 1080 Ti.

The mel-spectograms have 120 mel-frequency bins and are
obtained at every 256 samples with a window of 1024 samples
and a FFT of size 2048. The sampling frequency of the signals
is 24 kHz.

5.2. Vocoder Evaluation

To evaluate how MelGAN compares with other neural vocoders
in our system we performed a small scale listening test. We used
MelGAN, WaveNET and WaveRNN to synthesize both natu-
ral and converted mel-spectograms. The neural vocoders were
trained on the VCTK corpus and the different conversion mod-
els were trained on combinations of four speakers, two male
and two female, also from the VCTK corpus. We used 10
phrases, each converted by 8 transformations (4 same-gender
and 4 cross-gender) and synthesized by each of the 3 vocoders,

Table 1: Subjective test results comparing vocoders, for both
natural and converted mel-spectrograms (average values with

95% confidence interval).

Natural mel-spectograms

WaveNet WaveRNN MelGAN
Naturalness | 3.78 £0.18 | 3.76 £0.16 | 3.72 £ 0.18
Similarity | 4.50+0.15 | 4.35+0.15 | 4.20+0.18

Converted mel-spectograms

WaveNet WaveRNN MelGAN
Naturalness | 1.94+0.13 | 2.32+0.14 | 2.30£0.13
Similarity | 1.93+0.12 | 2.04 £0.13 | 1.91+0.12

Table 2: Mean mel cepstral distortion between converted and
reference signals

CycleGAN | CycleVAE | ASR-TTS
MCD 12.3 14.9 10.1

resulting in 240 test signals, plus the same 10 phrases synthe-
sized by the 3 vocoders from natural mel-spectrograms of the
four speakers, resulting in 120 test signals.

We performed on-line listening tests with 20 volunteers.
For each test the listener was shown the evaluated signal and
a reference. The listener was asked to grade in a five-point nu-
merical scale from 1 to 5: 1) the naturalness (perceptual overall
quality) of the signal, i.e. the presence of artifacts, the speech
intelligibility, etc.); 2) the similarity of the speaker to a refer-
ence speaker. Test signals were distributed among listeners such
that each listener evaluated an equal amount of signals from
each combination of source and target speakers and vocoder.
Each listener evaluated 80 signals. Table 1 shows the results.

MelGAN and WaveRNN performed the best in this test, but
results were mostly relatively close, with WaveNet struggling
slightly with converted speech. Since the qualities are compa-
rable, we proceeded with MelGAN due to its fast generation
speed.

5.3. Cepstral Distance

We use the mel cepstral distortion (MCD) as a rough estimation
of the system performance. We compare samples converted by
our system with samples from two of the baseline systems from
the VCC. The first baseline [25] uses CycleVAE, a voice con-
version system based on variational auto-encoder, to transform
the signal and Parallel WaveGAN, a neural vocoder inspired by
WaveNet, to perform the synthesis. The second baseline [4]
chains an automatic speech recognition (ASR) system with a
speaker dependent text-to-speech (TTS) system, achieving con-
version using a linguistic representation as an intermediate step.

To perform the comparison we use 3 utterances per pair
of speakers for a total of 48 utterances. We extract the mel-
cepstral coefficients from raw audio every 256 samples with a
window of 1024 samples and an FFT size of 2048. We align
each sequence of coefficients with its reference sequence using
dynamic time warping, and take the mean distance between cor-
responding vectors. Table 2 shows the results. Our system ob-
tained a lower distortion than the Cycle VAE baseline, but higher
than the ASR-TT baseline.



5.4. VCC 2020 Experimental design

The VCC 2020 evaluation [3] consisted of a large scale listening
test. Tests were performed by 206 Japanese listeners and 68 na-
tive English listeners. Listeners evaluated the performance of 33
participants, including three baseline systems. Listeners were
asked to judge the naturalness and similarity of signals. Natu-
ralness was measured on a five point numerical mean opinion
score (MOS) scale, from 1 to 5, with 1 being the lowest quality
and 5 being the highest. Similarity was measured on a four point
categorical scale, with classifications ‘different (sure)’, ‘differ-
ent (not sure)’, ‘same (not sure)’ and ‘same (sure)’.

5.5. VCC results

Figures 4 and 5 show the results of the listening tests performed
by English and Japanese listeners, respectively. Each submitted
system is represented by a ID and TAR and SOU correspond to

natural speech by the target and source speakers, respectively.
Our submission’s ID is T21.

Task 1, English Listeners, Quality Results
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Task 1, English Listeners, Similarity Results
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(b) Similarity as judged by English listeners

Figure 4: Evaluation result of VCC 2020 Task 1 for English
listeners. Our submission ID is T21

For similarity CycleGAN obtained averaged similarity
scores of 2.51 for English listeners and 2.59 for Japanese lis-
teners. English speakers considered the converted speaker to be
the same as the target speaker around 52% of the time, while
Japanese listeners thought the same around 55% of the time.
For naturalness we achieved a MOS score of 1.92 for English
listeners and 1.81 for Japanese listeners.

Averaged Similarity Score
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Figure 5: Evaluation result of VCC 2020 Task 1 for Japanese
listeners. Our submission ID is T21

5.6. Discussion

Overall our results were below the results obtained by most of
the other systems. One difficulty that we found was the pursuit
of a multi-speaker neural vocoder that could lead to very high
quality of synthetic speech. Training of these vocoders usually
requires a large amount of data, with many hours per speaker.

The other factor that added to the low quality of converted
speech came from our CycleGAN model. Since the vocoder
is capable of obtaining high quality signals when synthesizing
natural mel-spectrograms, as shown in Table 1, we can infer
that most defects that resulted in lower quality were introduced
by the CycleGAN step. Due to time restrictions, we were not
able to find the best set-up for the VCC samples, deferring some
design decisions such as type and size of layers, normalization
strategies, etc. to other works instead of performing a proper
systematic study. In the future we intend to apply better training
strategies on our CycleGAN model. We also intend to increase
the dataset to train MelGAN, as well as work on neural vocoder
adaptation approaches in order to increase the acoustic quality
of converted speech.

6. Conclusion

We presented the system description of our submission to
the Task 1 of the VCC 2020. The system is composed of
a CycleGAN voice morphing network, which converts mel-
spectrograms, and a MelGAn neural vocoder, which synthe-
sizes converted speech. Our system achieved a naturalness

Averaged Similarity Score



MOS of 1.92 and a similarity score of 2.51 for English lis-
teners, with similar results for Japanese listeners. Our results
indicate that perhaps better training strategies and different ar-
chitectural choices should have been tried for CycleGAN, to
make it more robust and suitable for the VCC samples. We also
understand that using a relatively small database to train our
neural vocoders, with just a few hundred sentences per speaker,
resulted in acoustic quality that is usually below what can be
achieved nowadays with databases containing many hours of a
single speaker.
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