(case 1) and Fig. 2 (case 2) for various values of L,;. As can be
seen in Fig. 1, interdiffusion initially causes x; to decrease,
followed by an increase, and then a decrease. The initial
reduction of &, can be explained by the raising of E; due to a
narrower well width at the bottom of the nonsquare QW for
small L;s, as explained in Reference 7, while E, remains at
about the same level. This would cause N to be reduced
from 43 x 1017 ecm™3 (L,=0A4) to 211 x 107 cm ™3 (L, =
20 A), ie. a reduction of ~350%, and then increase to a
maximum of ~10'® cm~3 (L, = 40 A). However, the a; peak
drops more rapidly with increasing L, because the negative
as(peak) oc put, whereas the positive a,(peak) oc u?,, where g, ,
is an increasing function of L;. A bleaching effect can be seen
at large L,s which is similar to that observed at L,=0A
using higher incident optical intensities (I,, > 1.5 MW/cm?)
[4, 7]. The variation of the a, peak positions, as shown in
Fig. 1{a = ), is about 153 meV (43 um) which provides a wide
tuning range for the operation of detectors.
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Fig. 2 Room temperature intersub-band spectral absorption coefficients
ay, oy, and oy = o, + ay in 60 A wide Aly., ;Gay.g5As/GaAs EQW for
different diffusion lengths L, case 2

%y

Fig. 2 shows the absorption coefficient for the structure
denoted as case 2, which has a lower barrier height and a
lower E,. The average of the absorption peak magnitudes are
reduced and the variation of the a; peak positions is much
smaller, 76 meV (13 um), although the values of a; are more
or less the same. This can provide a more uniform device
operation over the corresponding wavelength range. The
reduced absorption is due to the lower E, level causing a
smaller N (5-3-6-3 x 10'" cm™3), and the small variation of
the o, peaks is due to the small variation of the E; levels over
the range of L, used, because it consists of a shallower as-
grown QW and therefore the movement of the quantised
levels is less sensitive. The bleaching effect is seen to be strong-
er here.

In summary, we have reported the first theoretical predic-
tion of intersub-band absorption coefficient of interdiffusion
induced QWs. The well shape variation can provide a large
tuning wavelength range in the far IR region with an almost
constant absorption. This may be used to produce a wide
bandwidth detector if a series of QWs with different L;s is
used. The advantage of this nonsquare QW structure may

886

also provide lower leakage currents due to reduced tunnelling
between the wells, because the barrier thickness at the ground
state energy is always thicker than that at the excited state
energy.
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COMPOSITE ALGORITHMS FOR ADAPTIVE
IR FILTERING

S. Lima Netto and P. S. R. Diniz

Indexing terms: Algorithms, Adaptive filtering

Two algorithms based on the combination of the output and
equation error schemes are proposed. Their relations are dis-
cussed and an example is included to show that the aigo-
rithms may be useful for solving some adaptive IIR filtering
problems that cannot be successfully solved with existing
algorithms,

Introduction: In the parameter estimation of unknown infinite
impulse response (IIR) systems the most commonly employed
estimation errors are the output error and the equation error
[1]. The mean-square equation error (MSEE) surface is well
behaved with a single minimum, however equation-error
based algorithms converge to biased parameters in the pres-
ence of additional noise. On the other hand, the mean-square
output error (MSOE) surface may have several local minima
depending on the order of the adaptive IIR filter as compared
to the unknown system, and on the input signal properties.
Output-error based algorithms will converge to a local
minimum that may not be acceptable.

Several alternative algorithms are available that combine
output and equation error formulations in an attempt to
retain the good features of each algorithm [2, 3]. The compos-
ite regressor algorithm (CRA) [2] combines the regressor of
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the equation error with the output error based pseudolinear
regressor algorithms [4, 5]. The latter uses a simplified reg-
ressor that may stop the algorithm from converging to a
minimum of the MSOE surface. Therefore, the CRA con-
verges to biased parameter estimates like the algorithms that
originated it.

In this Letter, two algorithms based on the combination of
the output and equation error schemes are proposed. Their
relations are discussed and an example is included showing
that the algorithms may be useful for solving adaptive IIR
filtering problems that have not been successfully solved with
existing algorithms.

Algorithm I: In a parameter identification problem, the mea-
sured output signal of the unknown system is described by

yn) = [ﬁﬁ l;]xm) + vtn) )

where Blg™ ) = Yo b;qg ' and A(g™ ") =1+ 37", a;q %, are
coprime polynomials of the unit delay operator ¢~ ', and x(n)
and v(n) are the input signal and the additive noise, respec-
tively. The IIR adaptive filter designed to identify the
unknown system is described by

. [Bg'n
yn) = [m]x(") (2)

where B(g™', m) =31, bmg ™/ and g ', m=1+Yle,
a{n)q~". In output error based algorithms, the objective is to
minmise an estimate of the MSOE defined by

MSOE = E[e}n)]
= E{[y(n) — $(m1*}

B =1 B —l1 2
= E<{[—("ﬂ) _Ba.n n):|x(n) + v(n)} > 3
Al Alg L n)
For equation-error based algorithms, the objective is to mini-
mise an estimate of the MSEE given by

MSEE = E[eX(n)]
= E{[A(g™", n)eo(n)]*}
= E{[A(g"", my(n) — Bg" ", nx(n)]*} “

The most widely used estimate for the mean square of an
arbitrary error e(n) is the instantaneous error squared e*(n),
where e(n) can be the equation, output, or any alternatively
defined error. In this case, the updating of the coefficients can
be performed as

6(n + 1) = 6(n) + pe(md(n) )

where @(n) = [a,(n) ... 4, (mbo(n) ... by ()17 is the coefficient
vector of the adaptive IIR filter and ¢(n) = —V,[e(n)]
is the regressor vector, i.e. the gradient vector of e(n) with
respect to the coefficient vector.

The CRA combines the equation and output errors by
employing an error signal given by

Alg™", n) )
B+(1—pAlg. m]°

and a regressor vector defined as
Geraln) = Bdeln) + (1 = Pidpuln) @)

where @u(m) = [¥n — 1) ... yn — Ax(n) ... x(n — A,)]7 is the
equation error algorithm regressor ¢p(n) = [§(n — 1) ... J(n
— Ax(n) ... x(n — A,)]" is the regressor of the pseudolinear
algorithm, and f is a composition factor. It can be noticed
that the regressor used in the CRA does not correspond to the
gradient of ecg,(n) with respect to the parameters, i.e. the
CRA does not have the basic property of minimising an esti-
mate of E[eZg ,(n)] following the steepest-descent direction.

ecraln) = I: (6)
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An algorithm based on the error ecg4(n), denoted by algo-
rithm I, can be derived by using the regressor defined by

PN Oecg 4(n)

&/n) = 26

1
T+ (- PAE Lo
By =+ [ = pAlG, mlstn i)}
(Bxin — j) + [ — BA@™ ", m]x(n — j)
1
B+ — PAg L n]?
x [Bde(n) + (1 = PA(g ™", mpin)] ®)

The coefficient updating of algorithm I is then described by

é(" +1)= é(") + l“’l(")‘ﬁt(") ©)

where e,(n) = ecp4(n) and ¢,(n) are defined, respectively, in
eqns. 6 and 8.

Algorithm II: Algorithm II is derived by combining the
output and equation error in the following form:

en(n) = Peg(n) + (1 — Pley(n)
= {1+ BLA(g™", n) — 1T}es(n) (10)

with the regressor vector given by

N _ Jey(n)
Pyln) = 0
1 —
Byt — i) + [——;(q, f L)]y*(n —

Ag™', n)
= [Bdgn) + (1 — Pdo(n)] (11)

1—
Bx(n —j) + [(—i]xw -1J)

The coefficient updating is performed as follows:
b(n + 1) = 60n) + pey(m)Pyln) (12

From eqns. 6, 8, 10, and 11 the following characteristics of the
algorithms I and II can be easily shown:

efn) = ey(n) = eo(n) 13
p=0 s=0
em| =en)| = edn) (14)
B=1 =1
M _ Oefn) o
dn) o =6 seo = ¢ln) seo
_ Oeyfn) o
=7 oo = ¢oln) (15)
N _ Jen) 2
?n) por "0 e Pu(n) .
~ Oey(n) 2
=0 |, ®(n) (16)

In fact, the errors in algorithms I and IT are related by

B — Bl ) — 112}6 @
B+(1—pPAGgn [°

en(n) = efn) + { 17

Despite this relation, algorithms I and II might have distinct
overall properties, for example algorithm I has higher compu-
tational complexity than algorithm II. For this reason, only
algorithm II is considered in the following Section.
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Simulation results: Algorithm IT was tested for a number of
system identification problems. Here we concentrate on the
identification of a second-order plant with transfer function

[71

0-05 - 0-4z™!

Hiz ") =
) = T T3, T 4 0252 2

(18)
where the adaptive filter is a first-order filter described by

1 bo(n)
Hiz" ', n) T4yt (19)
The input signal is a white noise with zero mean and unit
variance. Given the initial point at [bo(0); 4,(0)] =[—0-1;
0-2], it was found that algorithm II with = 0-04 con-
verges to the point [ —0-306; 0-907] that is closer to the global
minimum [—0-311; 0-906] than the equation error algorithm
solution [0-050; 0-931]. The output error algorithm converges
to a local minimum [0-114; —0-519]. In fact, the error surface
for § = 0-04 is unimodal as depicted in Fig. 1. For § =003 a
local minimum still exists. A strategy that can be used to
reach the global minimum is to start with =1, that corre-
sponds to the equation error criteria, and decrease f as the
algorithm progresses. This approach was implemented in the
example above reducing by 0-1 every 1000 iterations, and as
a result the global minimum was reached.

p 0205
OYS_,.
T o
S ]
-0
1 105 !
10 — . e
-1.0 -05 0 05 10

31973 Bo(n)

Fig. 1 Error surface contours for f = 0-04

It should be mentioned that the proposed algorithms do
not guarantee convergence to global minimum of the MSOE
surface, however the solution may be better than the one
obtained with the equation error algorithm for insufficient
order identification, or in the presence of additional noise.

Conclusion: This work presented alternative algorithms for
adaptive IIR filtering based on appropriate combination of
the output and equation error approaches. The proposed
algorithms provide an extra parameter that may be manipu-
lated to obtain a tradeoff between parameter bias and con-
vergence to a local minimum. Further studies are needed to
device a strategy to implement a variable §.
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MODIFIED EXPONENTIAL BIDIRECTIONAL
ASSOCIATIVE MEMORIES

W.-J. Wang and D.-L. Lee

Indexing terms: Associative memories, Neural networks

Based on the Jeng exponential bidirectional associative
memory (EBAM), a modified updating rule of EBAM is pre-
sented. In the recalling processes of the modified EBAM
(MEBAM), the continuity assumption of the EBAM is
relaxed and heterocorrelation processes run parallel with the
autocorrelation processes. An energy function, which is
defined and does not increase on the change of neuron states,
ensures the stability of the system. Finally computer simula-
tions demonstrates that the MEBAM has much better
storage capacity than that of the Jeng EBAM.

Introduction: The directional associative memory [1-3]
(BAM) is a minimal two-layer nonlinear feedback network in
which associative paired data are recalled by directionally
updating the neuron state through the connection matrix M
and its tranpose M7. The primary constraint is that all the
stored pairs are local minima of the energy surface. Simpson
[4] proposed the intraconnected BAM (IBAM) by adding the
intralayer connections to the Kosko BAM, with which the
complement encoding problem can be removed. However, the
continuity assumption of the BAM had not been relaxed until
the modified IBAM was proposed [7]. Furthermore, Jeng et
al. [6] proposed the exponential BAM (EBAM) which uses
exponential nonlinearity to improve the storage capacity of
the BAM. However, only heterocorrelation updating pro-
cesses exist in the recall process of the EBAM which still
requires the continuity assumption. We propose a modified
updating rule for the EBAM by adding an autocorrelation
exponential term to the original phase of the EBAM such that
the continuity assumption is relaxed and the storage capacity
is improved. An energy function which is defined and does not
increase during the change of the neuron states ensures the
stability of the system.

Analysis of EBAM: Assume there are m stored pairs {(X",
Y™ |, where X e {—1, 1}" and Y' e {—1, 1}”. The bidirec-
tional updating rules [6] of the EBAM in one cycle are

Y=f[X)=sgn{§:Y"1<X"x>} (1a)

=1
X' =g(Y)=sgn {}Ex‘a”“”} (1b)
i=1

where « > | and ¢ , ) denotes the inner product; sign (x) =1
for x > 0 and sgn (x) = — 1 otherwise. As mentioned by Jeng
et al. [6], the EBAM has improved the storage capacity and
the error correcting capability of the BAM. However, the
‘continuity assumption’ of the Kosko BAM [3]

1 . A
;H(X‘. X)y=~ H(Y', Y) (2)

1
p

ELECTRONICS LETTERS 23rd April 1992 Vol. 28 No. 9



