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Adaptive IIR Filtering Algorithms for System 
Identification: A General Framework 

Sergio L. Netto, Paulo S. R. Diniz, Senior Member, IEEE, and Panajotis Agathoklis, Senior Member, IEEE 

A6strmt- Adaptive IIR (infinite impulse response) filters are 
particularly beneficial in modeling real systems because they 
require lower computational complexity and can model sharp 
resonances more efficiently as compared to the FIR (finite impulse 
response) counterparts. Unfortunately, a number of drawbacks 
are associated with adaptive IIR filtering algorithms that have 
prevented their widespread use, such as: Convergence to biased 
or local minimum solutions, requirement of stability monitoring, 
and slow convergence. Most of the recent research effort on this 
field is aimed at overcoming some of the above mentioned draw- 
backs. In this paper, a number of known adaptive IIR filtering 
algorithms are presented using a unifying framework that is 
useful to interrelate the algorithms and to derive their properties. 
Special attention is given to issues such as the motivation to 
derive each algorithm and the properties of the solution after 
convergence. Several computer simulations are included in order 
to verify the predicted performance of the algorithms. 

Index Tenns-adaptive filters, adaptive algorithms. 

I. INTRODUCTION 

N the last decades, substantial research effort has been spent I to turn adaptive IIR' filtering techniques into a reliable 
alternative to traditional adaptive FIR filters. The main advan- 
tages of IIR filters are that they are more suitable to model 
physical systems, due to the pole-zero structure, and also 
require much less parameters to achieve the same performance 
level of FIR filters. Unfortunately, these good characteristics 
come along with some possible drawbacks inherent to adaptive 
filters with recursive structure such as algorithm instability, 
convergence to biased and/or local minimum solutions, and 
slow convergence. Consequently, several new algorithms for 
adaptive IIR filtering have been proposed in the literature 
attempting to overcome these problems. Extensive research on 
this subject, however, seems to suggest that no general purpose 
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'The acronyms FIR and IIR filters are commonly used in time-invariant 

digital .filter theory to indicate, respectively, the finite or infinite impulse 
response characteristic of these devices. FIR filters are usually implemented 
by nonrecursive (all-zero) realizations and IIR filters by recursive (zero-pole) 
realizations. The same nomenclature also applies to adaptive filter theory. 

optimal algorithm exists. In fact, all available information must 
be considered when applying adaptive IIR filtering, in order 
to determine the most appropriate algorithm for the given 
problem. 

The main objective of this paper is to present the character- 
istics of the most commonly used algorithms for IIR adaptive 
filtering, when applied to system identification applications, 
in a simple and unified framework. There is a plethora of 
system identification techniques in the literature [2], [ 161, 
[41], [57]. This paper deals with simple on-line algorithms 
that are being used for adaptive IIR filtering. Earlier general 
papers on this topic were presented by Johnson [33], Shynk 
[ S I ,  and Gee and Rupp [17]. In [33], Johnson presents 
a tutorial on adaptive IIR filtering techniques highlighting 
the common theoretical basis between adaptive filtering and 
system identification. This work was the first attempt to unify 
the concepts and the terminology used in the fields of adaptive 
control and adaptive filtering. Later, in 1989, Shynk [55] 
published a tutorial on adaptive IIR filtering that deals with 
different algorithms, error formulations, and realizations. Due 
to its general content, however, this paper addresses only a few 
algorithms. Moreover, several new techniques were proposed 
after the publication of these papers motivating additional 
work on this topic. 

The organization of the present paper is as follows: In 
Section 11, the basic concepts of adaptive signal processing 
are discussed and a brief introduction to the system iden- 
tification application is presented, providing the necessary 
background to study the characteristics of the several adaptive 
filtering algorithms based on different error definitions. Section 
111 presents a detailed analysis of the Equation Error (EE) 
[41], Output Error (OE) [61], [69], Modified Output Error 
(MOE) [14], [36], SHARF [36], [39], Steiglitz and McBride 
(SM) [8], [63], Bias-Remedy Equation Error (BRLE) [40], 
Composite Regressor (CR) [34], and Composite Error (CE) 
[50] algorithms, including their properties of stability, solution 
characteristics, computational complexity, robustness etc.. The 
advantages/disadvantages of each algorithm are also empha- 
sized. In Section IV, some simulation results are provided to 
illustrate some of the properties discussed in Section 111. 

11. ADAPTIVE SIGNAL PRGCESSING 

A. Basic Concepts 
Fig. 1 depicts the basic block diagram of a general adaptive 

system in practice. At each time interval, an input signal 
sample ~ ( n )  is processed by a time-varying filter generating 
the output y(n). This signal is compared to a reference y(n),  
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Fig. I .  B I w k  diagram of a general adaptive system. 

also called desired output, to generate an error signal P ( , / I , ) .  

Finally, this error signal is used on an algorithm to adjust 
the adaptive filter coefficients in order to minimize a given 
performance criterion. 

The specification of a complete adaptive system as shown 
in Fig. 1 consists of three items: 

I )  Application: The type of application is defined by the 
choice of the signals acquired from the environment to be 
the input and desired output signals. The number of different 
applications in which adaptive techniques are being success- 
fully used increased enormously during the last decade. Some 
examples are echo cancellation, equalization of dispersive 
channels, system identification, and control. The study of 
different applications, however, is out of the scope of this 
paper. Good sources of information about adaptive filtering 
applications are the references [21], [66], [71]. 

2) Adaptive Filter Structure: The choice of the structure can 
influence the computational complexity (amount of arithmetic 
operations per iteration) of the process and also the necessary 
number of iterations to achieve a desired performance level. 
Basically, there are two classes of adaptive digital' filter 
realizations: 

Adaptive FIR filter realizations: The most widely used 
adaptive FIR filter structure is the transversal filter, also 
called tapped delay line (TDL), that implements an all- 
zero transfer function with a canonic direct form real- 
ization without feedback. For this realization, the output 
signal i(10 is a linear combination of the filter coeffi- 
cients, what yields a quadratic mean-square-error (MSE 

'Despite oC the fact that some adaptive filters can also be implemented 
with continuous-time techniques. general resulth had shown that this type of 
reali~ation still faces many practical implementation problems [25], 1441. [67]. 
As a consequence, this paper will focus on discrete-time implementations o f  
adaptive systems. 

. 

= E[?(,,,,)]) function with a unique optimal operation 
point [ 7 1 I .  Other alternative adaptive FIR realizations are 
also used in order to obtain improvements as compared to 
the transversal filter structure in terms of computational 
complexity [7], [15], speed of convergence [43], [4S], 
[46], and finite word length properties [21]. 
Adaptive IIR filter realizations: An early attempt to im- 
plement an adaptive IIR filter was made by White [69] 
in 1975 and since then a large number of papers have 
been published in this area. Initially, most of the works 
on adaptive IIR filters made use of the canonic direct- 
form realization due to its simple implementation and 
analysis. However, due to some inherent problems of 
recursive adaptive filters that are also structure dependent 
such as continuous poles monitoring requirement and 
slow speed of convergence, different realizations were 
studied attempting to overcome the limitations of the 
direct form structure. Among these alternative structures, 
the cascade [6]. lattice [S2], and parallel [S4] realizations 
can be considered by their unique features. The most 
important characteristics of these recursive filter struc- 
tures are summarized in Table 1. From Table I ,  it can be 
easily concluded that each of these structures has some 
specific advantages when compared to the others, what 
seems to indicate that in practice there is no general 
optimal structure. The study of alternative realizations is a 
research direction that has been vastly explored by many 
authors, specially during the most recent years [SI, [6], 
1521-[541, [681. 

3) Algorithm: The algorithm is the procedure used to adjust 
the adaptive filter coefficients in order to minimize a prescribed 
criterion. The algorithm is determined by defining the search 
method (or minimization algorithm), the objective function and 
the error signal nature. The choice of the algorithm determines 
several crucial aspects of the overall adaptive process, such 
as existence of suboptimal solutions, biased optimal solution, 
and computational complexity. 

The main objective of this paper is to analyze a number of 
known algorithms used in adaptive IIR signal processing. In 
order to present a simple framework, all the analysis shown in 
this work will be based on the system identification application 
and on the direct-form IIR structure. However, all results 
discussed can be easily extended for other applications and 
realizations following the studies of Johnson [28], [32] and 
Nayeri [47], respectively. 
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I I Plant 

Fig. 2. Block diagram of an adaptive system identifier. 

B. System Identijcation with IIR Direct-Form Realization 

In the system identification configuration, the adaptive algo- 
rithm searches for the adaptive filter such that its input/output 
relationship matches as close as possible that of the unknown 
system. 

Fig. 2 depicts the general block diagram of an adaptive sys- 
tem identifier where the unknown system or plant is described 
by 

where A(4-l)  = 1 - aiq-2 and B(4-l)  = cy:, b jq - j  
are coprime polynomials of the unit delay operator q-', and 
~ ( n , )  and ~ ( n )  are the input signal and the additive perturbation 
noise, respectively. The adaptive filter is implemented with the 
direct-form structure described by 

where A ( q - l , n )  = 1 - ~ ~ ~ l u z ( n ) q - z  and & ( q - ' , 7 1 )  = 

Another way to represent the adaptive identification process 
depicted in Fig. 2 can be obtained by defining the following 
vectors: 

E;:, i 3 ( n ) y - J .  

where 8 is the plant parameter vector, 4(n) is the plant 
information vector, &n) is the adaptive filter parameter vec- 

tor, and &,410E(n) is the adaptive filter information vector, 
respective~y.~,~ 

With the above definitions, ( 1 )  and (2) can be respectively 
rewritten in the forms 

Y ( n )  =4T(n)e  + 4.1 (4) 

i ( 71.1 =& 0 E ( n )e ( 1 ( 5 )  

The physical meaning of a signal is more clear when using 
the delay operator polynomial notation. At the same time, the 
vectorial notation is also quite useful, since it greatly simplifies 
the adaptive algorithm representation, as will be seen later. 

In order to present the adaptive IIR filtering algorithms in 
a structured form, it is useful to classify the identification 
problem by combining three of the following features, one 
in each item. 

1) Classification with respect to the adaptive filter order: 
Feature (a) - insufficient order: n* < 0; 
Feature (b) - strictly sufficient order: n* = 0; 
Feature (c) - more than sufficient order: n* > 0, 

where n* = mi71[(na-ha); ( n b - i i b ) ] .  In many cases, features 
(b) and (c) are grouped in one class, called sufficient order, 
where n* 2 0. 

2) Classification with respect to the input signal properties: 
Feature (d) - persistent exciting input signal; 
Feature (e) - nonpersistent exciting input signal. 

Basically, the persistence of excitation concept [2], [56] can be 
associated to the amount of information carried by the external 
signals ~ ( n )  and y(n) of the adaptive process. 

3) Classification with respect to the disturbance signal 
properties: 

Feature (f) - without perturbation; 
Feature (g) - with perturbation correlated with the input 

Feature (h) - with perturbation uncorrelated with the input 

Processes with feature (e) may lead to situations where it is 
not possible to identify the system parameters and therefore 
they are not widely studied in the literature. Also, feature (g) 
can be considered a special case of feature (a). All the other 
cases will be considered in this paper. 

signal; 

signal. 

C. Introduction to Adaptive Algorithms 

The basic objective of the adaptive filter in a system 
identification problem is to set the parameters e(n)  in such 
way that it describes in an equivalent form the unknown 
system input-output relationship, i.e., the mapping of :I:( 71) 

into y(n). Usually, system equivalence [2] is determined by an 
objective function W of the input, available plant output, and 
adaptive filter output signals, i.e., W = W[x(n) ,g(n) ,  $(.)I. 
Two systems, S1 and S2, are considered equivalent if, for the 

"n this shorter notation, the vertical bar delimiter 'I' emphasizes the fact 
that the respective information vector is formed by subvectors of the indicated 
variables. This notation will be used throughout the paper in order to obtain 
a simple presentation. 

4The index intervals for I and j will remain valid for all equations in this 
paper, and from now on they will be omitted for the sake of simplification. 
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same signals .r(,//,) and y(rr ), the objective function assumes 
the same value for these systems: M.[.r( I I  ). ;y( I t , ) ,  j j 1  ( r t . ) ]  = 
W[.r(r/,),y(/t). 4~(7/)]. It is important to notice that in order to 
have a consistent definition the objective function must satisfy 
the following properties: 

Nonnegativity: W[:r(7r.). q ( 7 1 ) .  :Q( 
Optimality: L ~ ~ [ . f ~ ( , / ~ ) , ; f / ( / / ) .  !/(7/,)] = 0. 

Based on the concepts presented above, we may understand 
that in an adaptive process the adaptive algorithm attempts 
to minimize the functional LV in such a way that $ ( T A )  

approximates !I( n )  and, as a consequence, e( 7 1 )  converges to 
0, or to the best possible approximation of 8. 

Another way to interpret the objective function is to consider 
i t  a direct function of a generic error signal c ( n ) ,  which in turn 
is a function of the signals . r (  I ) , ) .  y (  M), and $ ( i / , ) ,  i.e., W = 
W[c,(/r)]  = W [ r > ( . r ( ? ~ ) .  y ( / j ) .  5 ( / 1 , ) ) ] ,  Using this approach, 
we can consider that an adaptive algorithm is composed of 
three basic items: Definition of the minimization algorithm, 
definition of the objective function form, and definition of the 
error signal. These items are following discussed: 

1 )  Definition of the minimization algorithm for the func- 
tional LV: This item is the main subject of the Optimization 
Theory and it essentially affects the adaptive process speed of 
convergence. The most commonly used optimization methods 
in the adaptive signal processing field are: 

2 O,V:Q(n); 

Newton method: This method seeks the minimum of 
a second-order approximation of the objective function 
using an iterative updating formula for the parameter 
vector given by 

where is a factor that controls the step size of the 
algorithm, X&{W[(: (n)]}  is the Hessian matrix of the 
objective function, and C .  { W[e(s/,)]} is the gradient of 
the objective function witf respect to the adaptive filter 
coefficients; 
Quusi-Newton methods: This class of algorithms is a 
simplified version of the method described above, as 
i t  attempts to minimize the objective function using 
a recursively calculated estimate of the inverse of the 
Hessian matrix, i.e., 

B ( r ,  + 1) = e( r r )  ~ I d ' (  / /)Ye{ W[C(? / ) ] }  (7) 

where / ' ( r / , )  is an estimate of ' H T ' { W [ e ( 7 / ) ] }  such that 

1 i 1 1 i , , - ~  P(rr) = 'K1{1 I .~ [c (u) ] } .  A usual form to imple- 
ment this approximation is through the matrix inversion 
lemma (see for example [42]). Also, the gradient vector is 
usually replaced by a computationally efficient estimate; 
Gradient method: This type of algorithm searches the 
objective function minimum point following the opposite 
direction of the gradient vector of this function. Conse- 
quently, the updating equation assumes the form 

e 
e 

In general, gradient methods are easier to implement, but 
on the other hand, the Newton method usually requires a 
smaller number of iterations to reach a neighborhood of the 
minimum point. In many cases, Quasi-Newton methods can 
be considered a good compromise between the computational 
efficiency of the gradient methods and the fast convergence of 
the Newton method. However, the latter class of algorithms 
are susceptible to instability problems due to the recursive 
form used to generate the estimate of the inverse Hessian 
matrix. A detailed study of the most widely used minimization 
algorithms can be found in [42]. 

It should be pointed out that with any minimization method, 
the convergence factor p, controls the stability, speed of 
convergence, and misadjustment [7 11 of the overall adaptive 
algorithm. Usually, an appropriate choice of this parameter 
requires a reasonable amount of knowledge of the specific 
adaptive problem of interest. Consequently, there is no general 
solution to accomplish this task. In practice, computational 
simulations play an important role and are, in fact, the most 
used tool to address the problem. 

2) Definition of the objective function W[c(n ) ] :  There are 
many ways to define an objective function that satisfies the 
optimality and nonnegativity properties formerly described. 
This definition directly affects the complexity of the gradient 
vector (and/or the Hessian matrix) calculation. Using the 
algorithm computational complexity as a criterion, we can list 
the following forms for the objective function as the most 
commonly used in the derivation of an adaptive algorithm: 

Mean Squared Error (MSE): W[f : (n ) ]  = E[r,'(rb)]; 
Least Squares (LS): w [ v ( / / ) ]  = & xi=,, ('(7) - i ) ;  
Instantaneous Squared Value (ISV): W[c(n)]  = c2(r / , ) .  

The MSE, in  a strict sense. is of theoretical value since 
it requires an infinite amount of information to be measured. 
In practice, this ideal objective function can be approximated 
by the other two listed. The LS and ISV differ in the im- 
plementation complexity and in the convergence behavior 
characteristics; in general, the ISV is easier to implement but 
presents noisy convergence properties as it  represents a greatly 
simplified objective function. 

3) Definition of the error signal ~ ( 7 6 ) :  The choice of the 
error signal is crucial for the algorithm definition since it can 
affect several characteristics of the overall algorithm including 
computational complexity, speed of convergence, robustness, 
and most importantly, the occurrence of biased and multiple 
solutions. Several examples of error signals are presented in 
detail in the following section. 

The minimization algorithm, the objective function, and the 
error signal as presented give us a structured and simple way 
to interpret, analyze, and study an adaptive algorithm. In fact, 
almost all known adaptive algorithms can be visualized in this 
form, or in a slight variation of this organization. In the next 
section, using this framework we present a detailed review of 
the best known adaptive algorithms applicable to adaptive IIR 
filtering. It may be observed that the minimization algorithm 
and the objective function mainly affect the convergence speed 
of the adaptive process. Actually, the most important task for 
the definition of an adaptive algorithm definition seems to be 

!\- . 
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the choice of the error signal, since this task exercises direct 
influence in many aspects of the overall convergence process. 
Therefore, in order to concentrate efforts on the analysis of 
the influence of the error signal and to present a simple study, 
we will keep the minimization algorithm and the objective 
function fixed by using a gradient search method to minimize 
the instantaneous squared value of the error signal. 

111. ADAP~VE IIR ALGORITHMS 

This section presents an analysis of the Equation Error (EE), 
Output Error (OE), Modified Output Error (MOE), SHARF, 
Modified SHARF (MSHARF), Steiglitz-McBride (SM), Bias- 
Remedy Equation Error (BRLE), Composite Regressor (CR), 
and Composite Error (CE) algorithms. Specifically, are dis- 
cussed properties of stability, solution characteristics, com- 
putational complexity, and robustness, highlighting the ad- 
vantages/disadvantages of each algorithm when related to the 
others. 

A. The Equation Error Algorithm 

The simplest way to model an unknown system is to use 
the input-output relationship described by a linear difference 
equation as 

?/(71)=(^Li(R)Y(78 - 1) + . . . + (^Lfia(n)y(71 - ?la) 

+t;o(n)z(n) + . . . + hfi,(n):r(n - f i b )  + e m ( n )  (9) 

where &(n) and 6 j ( 7 1 )  are the adaptive parameters, and 
e ~ ~ ( n )  is a residual error, called equation error. Equation (9) 
can be rewritten using the delay operator polynomial form as 

or in a vectorial form as 

Y(71) = 4 ; ~ ( 7 L ) e ( 7 h )  + e E E ( n )  (1 1) 

with J E E ( 7 1 . )  = [y(n - i) I z ( n  - j ) I T .  
From equations above, it is easy to verify that the adaptive 

algorithm that attempts to minimize the equation error squared 
value using a gradient search method is given by 

e ( 7 1  + 1) = e (n)  - /L 'Vg[e~&)]  

= e(71)  - / L v e [ e E E ( n ) ] " E E ( n )  

= + d E E ( n ) e E E ( n )  (12) 

with p = 211'. This algorithm is characterized by the following 
properties [ 1 91 : 

Property 1: The Euclidean square-norm of the error pa- 
rameter vectordeJined by s ( n )  = IIf?(n) 112=110(~~)--8112 is a 
convergent sequence if ri* 2 0 and p satisfies 

n 

The equation error e ~ ~ ( 7 i )  is a convergent sequence if 
rL* 2 O and p satisfies 

This first property establishes the upper bound of p to guar- 
antee the stability of the equation error algorithm. Although 
this property asserts that s(n)  and ~ E E ( ~ L )  are convergent 
sequences, it is not clear to what value s ( n )  tends at con- 
vergence. This point is clarified by the following statement: 

Property 2: The characteristic of the equation error solution 
depends on the system identijcation process type as follows: 

In a suficient order case (n* 2 0). if the perturbation 
noise is Zero (iJ(n) E 0), all global minimum points of the 
mean-square equation error (MSEE) pelformance sulface are 
described by 

with C(4-l) = cb, C k q P k .  It means that all global mini- 
mum solutions have included the polynomials describing the 
unknown system plus a common factor C(4-l) present in the 
numerator and denominator polynomials of the adaptive Jilter. 
On the other hand, ifthe perturbation noise is present, theJinal 
solution is biased with the degree of bias being a function of 
the variance of the disturbance signal. 

In an insuficient order case (n* < Q),  the solution is always 
biased and the degree of bias is a function of the plant and the 
input signal characteristics. 

The main characteristic of the equation error algorithm is 
the unimodality of the MSEE performance surface due to the 
linear relationship existent between the equation error signal 
and the adaptive filter coefficients. This property, however, 
comes along with the drawback of biased solution in the 
presence of a disturbance signal. The following items show 
some algorithms that attempt to overcome this significant 
problem. 

B. The Output Error Algorithm 

The output error algorithm attempts to minimize the mean 
squared value of the output error signal, where the output error 
is given by the difference between the plant and the adaptive 
filter output signals, i.e., 

= +T(n)e - 3zf0E(n)e(7z) + (16) 

where q5(ri) and 4, , fOE(7i )  were defined in (3). By finding 
the gradient of an estimate of the objective function given by 
W [ e o ~ ( n ) ]  = E[e6E(n)]  with respect to the adaptive filter 
coefficients, we obtain 

"e["XE(")I = 2eoE(r~4"e["OE(n)]  

= - 2'06 ( n) "e [ Ij ( n. )] (17) 
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From equations above, it  follows that the gradient calcula- 
tion requires at each iteration the partial derivatives values of 
past samples of signal i ( v )  with respect to the variables of e at 
the present moment I ) .  This requires a relatively high number 
of memory devices to store data. In practice. this problem is 
overcome by an assumption called small step appmximution 
[4]. [ 221. [23] that considers the adaptive filter coefficients 
slowly varying. The resulting gradient vector is calculated as 

T -  
= [ # ( / I  - i )  I J - ' ( ~ / ~  - , j ) ]  = q i O E ( , / i . )  (19) 

The computation of gradient vector requires an all pole fil- 
tering of the signals ! j ( , / /  - l )  and , I . ( / / )  in order to obtain 
/ ) f (n - I )  and .r .f(rt ,) ,  respectively. Therefore, using the small 
step approximation, the output error algorithm is described by 

(20) 

The convergence properties of the output error algorithm 
are dependent on the form of the mean-square output error 
(MSOE) performance surface, which in  turn is characterized 
by some important concepts described below. 

Property 3: The stutionary points [42] of the MSOE perfor- 
tnunce surfixe dejined by l i l : [ c , o ~ ( r r . ) ]  = E [ P : ) ~ ( ~ ) ]  are given 
by [31, [561 

8(/, + 1 )  = 8 ( n )  + ~ ~ / ~ ~ , ~ ( , / , , ) ~ ~ ~ ~ ( , ~ / , )  

. I  i (I- I ) . \ ((1- 1 . , f , )  { [ / ] ( / / - I .  "I] J ( / I  - I )  } = 0 (21) 
' v ( q - 1 ,  I , )  

In practice, only tile stuhle stationary points, so culled 
equilibrium points. are o j  interest and usually these points are 
clussijied us 1491 

Degenerated points: The degeneruted points are the equi- 
librium points Mhere 

Nondegenerated points: All the equilibrium points thut Lire 
not degeneruted points. 

The next properties define how the equilibrium points 
influence the form of the performance surface associated to 
the output error adaptive algorithm. 

Property 4: If / I *  2 0, all globul minimu of the MSOE 
performance surjiace ure given by [3], [56] 

(24) 

with C((/-l) = E:=,, (.A.(!-'. I t  means that ull global mini- 
mum solutions have included the polynomials describing the 
unknown svstem plus a common ,fuctor C(11- ' ) present in the 
numerator und denominator polynoniials of the adaptive filter. 

Property 5: Ifn* 2 0. ull equilibrium points thut satisfi the 
strictly positive reulness condition 

A * (([- I ) = A( </- 1)C(  (1 - 1 ) i :  D * ( ( / - l )  = B ( y - l ) C ( q - ' )  

ure global minima [59]. 
Property 6: Let the input signal . r ( , t ~ , )  be given by : I : ( , I L )  = 

[-]w(/,,), where f - ' ( q - ' )  = E::,, . f ~ . q - ~  and G((l-l) = 

1 -E;;, !JA. ( / -"  are coprimepolynorniuls, undw(  r i )  is a white 
noise. Then if 

all equilibrium points are global minima 1.591. 
This later property is indeed the most general result about 

the unimodality of the MSOE performance surface in cases 
of sufficient order identification and i t  has two important 
consequences: 

Consequence 1 If fi,,, = ' / I , ,  = 1 and it(, 2 Ii,b 2 1 .  then there 
is only one equilibrium point, Mhich is the global minimum. 

Consequence 2 f f  . r ( n )  is a white noise ("f = 71,g = O), 
the orders of the adaptive filter are strictly suffjcient (,;I.,, = 'It , , ,  

and ,Titl = //,tl). und ;it, - T),,, + 1 2 0, then there is only one 
equilibrium point, which is the globul minimum. 

The case analyzed by this last statement was further in- 
vestigated by Nayeri in [48] where i t  was obtained a less 
restrictive sufficient condition to guarantee unimodality of the 
output error algorithm when the input signal is a white noise 
and the orders of the adaptive filter exactly match the unknown 
system. This result is given by 

Property 7: I f  . / . ( T I , )  is a white noise (71f = n,, = 0), the 
orders of the adaptive filter ure strictly suficient, (;L(~ = n,, 
and fi,h = , /IQ,), and ;/.I, - n,, + 2 2 0, then there is only one 
equilibrium point, wshich is the globul minimum [48]. 

Using numerical examples. Fan and Nayeri [ 1 1  1 showed 
that this last condition is the least restrictive sufficient con- 
dition that assures unimodality of the adaptive process for 
the corresponding adaptive system identification case. Another 
important property is 

Property 8: All degeneruted equilibrium points ure suddle 
points and their existence implies multimodality (existence of 
stable locul minimum) of the performance surjuce if either 
[I.,, > i&, = 0 or i),, = 1 1491. 
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Notice that this last property is independent of the value of 
n'and, as a consequence, is also valid for insufficient order 
cases. 

Besides all properties previously listed, another interesting 
statement related to the output error algorithm characteristics 
was made by Steams [62] who in 1981 conjectured that: 
if TJ,* 2 0 and z;(,ri) is a white noise input signal, then the 
performance surface defined by the MSOE objective function 
is unimodal. This conjecture was supported by innumerous 
numerical examples, and remained considered valid until 1989, 
when Fan and Nayeri published a numerical counterexample 
[ I  13 for it. 

Basically, the most important characteristics of the out- 
put error algorithm are the possible existence of multiple 
local minima, what can affect the overall convergence of 
the adaptive algorithm, and the existence of an unbiased 
global minimum solution even in presence of perturbation 
noise in the unknown system output signal. Other important 
aspect related to the output error algorithm is the stability 
checking requirement during the adaptive process. Although 
this checking process can be efficiently performed by choosing 
an appropriate adaptive filter realization, some research effort 
was spent in order to avoid this requirement, as detailed in 
the next items. 

C. The Mod$ed Output Error Algorithm 

Another adaptive algorithm based on the output error signal 
can be obtained using the following simplification on the 
derivation of the gradient vector 

- T  
= - 2% E (71)  "e [4,,, E (71 )e (7111 

2z 2 e o E b ) i h , o E ( n )  (27) 

leading to the modified output error (MOE) algorithm de- 
scribed by [14] 

+ 1)  = + P m E ( n ) i h . r o E ( n >  (28) 

with JMoE(n)  defined in (3). We can interpret the approx- 
imation shown in (27) as a linearization of the relationship 
between the output error and the adaptive coefficient vector. 
Since this relationship is nonlinear, where the nonlinearity is 
inherent to the definition of the vector +MoE(n), the MOE al- 
gorithm is also called pseudo-linear regression algorithm [41]. 
The MOE algorithm has the following global convergence 
property: 

Property 9 In cases of sufficient order identification (n* 2 
Q ) ,  the MOE algorithm may not converge to the global mini- 
mum of the MSOE performance surface, if the plant transfer- 
function denominator polynomial does not satisfy the following 
strictly positive realness condition 

Property 9 implies that the poles of the unknown system 
must lie inside the hyperstability region defined by (29). In 
general, the hyperstability region is always a subset of the 

, Im[z] 0 stabilityregion 
hyperstability region 

Re(z1 

I -1 

Fig. 3. Hyperstability region for the modified output error algorithm. 

stability region of the complex plane Z. For example, the 
hyperstability region of a second order unknown system is 
shown in Fig. 3. Property 9 also emphasizes the fact that the 
MOE algorithm may converge in some cases to the optimal 
solution of the MSOE surface [14]. This global convergence, 
however, can not be assured if the plant does not satisfy (29) 
[26], [70]. Moreover, it must be noticed that Property 9 has 
limited practical use, since the unknown system denominator 
polynomial is not available in general. This fact constitutes a 
major drawback for the MOE algorithm. 

D. The SHARF Algorithm 

From Fig. 3, it can be inferred that the global convergence 
of the MOE algorithm can not be guaranteed when the 
second order unknown system has poles in the neighborhood 
of' z = f l .  In order to solve this general problem and 
make the adaptive algorithm more robust in terms of global 
convergence, an additional moving average filtering can be 
performed on the output error signal in (28), generating an 
error signal given by 

( :SHARF(71)  = [o(q-')] eOE(71) (30) 

with D(4-l) = d k q - k .  The resulting algorithm is 
described by 

e(n  + 1) = b(n) + / ~ ~ s H A R F ( ~ ) $ ~ ~ o E ( ~ )  (31) 

The adaptive algorithm described by this equation is com- 
monly called SHARF, as a short name for simple hyperstable 
algorithm for recursivejlters. In 1976, Landau [36] developed 
an algorithm for off-line system identification, based on the 
hyperstability theory [39], that can be considered the origin of 
the SHARF algorithm. In [39], some numerical examples show 
how the additional processing of the error signal can change 
the allowed region for the poles, where the algorithm global 
convergence is guaranteed. Basically, the SHARF algorithm 
has the following convergence properties [27], [36], [37]: 

Property 10: In cases of suficient order ident$cation (n* 2 
0), the SHARF algorithm may not converge to the global min- 
imum of the MSOE performance sugace if the plant transfer 
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function dennrtiimtoi- polyiioiiirul does not sutislS, the following 
strictly positive redness condition 

1<1 [ "1 > 0 : = I 
. l (a- ' )  

(32) 

Property 11: I n  c u e s  of insufficient order identijicution 
( / I *  < 0). the udap t i t~~  filter output signal $,I/ ,)  and the udup- 
tive jiltrr coejicients Ivctor 0 ure stable sequences, provided 
the input signul is sufficiently persisrent exciting [I], [3 I]. 

From (30) and (31), it can be concluded that the MOE 
algorithm can be interpreted iis a special case of the SHARF 
algorithm when D ( ( / - ' )  = I .  In this case, Property I O  
becomes identical to the Property 9 associated to the MOE 
algorithm and Property 1 I is also valid for the MOE algorithm. 

The main problem of the SHARF algorithm seems to be 
the nonexistence of a robust practical procedure to define the 
moving average filter ,U((/-') in order to guarantee the global 
convergence of the algorithm. This is a consequence of the fact 
that the condition in (32) depends on the plant denominator 
characteristics, that in practice are unknown. 

E. The Moclijietl SHARF Algot-ithni 

In  order to guarantee global convergence for the SHARF al- 
gorithm independently of the plant characteristics, Landau [38] 
proposed the application of a time-varying moving average 
filtering to the output error signal. Using Landau's approach, 
the modified SHARF (MSHARF) algorithm can be described 
by 

( ' . w s H . \ f ! d f r ~ )  = [U(( /  1 ,  +f&) : 

(33) 
k . = l I  

d k ( I /  + 1 )  = d/k(7 / )  + I / , ~ ' Z / , ~ H . \ R F ( ~ ) , ) ( ' O E ( ~ J ,  - k )  ; 
k = 0. . . . . I / , /  (34) 

e('/! + 1 )  e(Ib) f /J,( '\lSH.-1RF(Tl)4,,IUE(rb) (35) 

Another interesting interpretation of the MSHARF algorithm 
can be found in [35]. The next statement describes the con- 
vergence properties of the MSHARF algorithm. 

Property 12: The MSHARF error signal r ! ~ I , ~ H . ~ R F ( u )  is a 
sequence thut converges to cero in the mean sense if ti,* 2 0 
and / r ,  satis$es 

(36) 

where 41ZISH,-1RF( r r , )  is the extended information vector de- 
jinrd u s  

1 
0 < /" < 

I1 d , / S H . - 1 I 1 I . ( ~ ~ )  (I2 

7' 
#.I/ ' ; / I  .q R F ( 1 )  ) = [$( - i ) I J' ( - ./ I A /  S H  .-I R F  (7). - )I (37) 

It  should be mentioned that i f  the signal ( ' A I , S H ; 1 R F ( ' u )  tends 
to zero, the output error ( ~ ~ ) b : (  n )  signal does not necessarily 
tend to zero. In fact, i t  was shown in [29] that the minimum 
phase condition of D (  4 - l .  I I  ) must also be satisfied in order 
to guarantee that f ' ( j E [  1 1 )  converges to zero in the mean sense. 
This additional condition implies that a continuous minimum 
phase monitoring should he performed in the polynomial 

D ( q - ' .  I ! )  to assure global convergence of the MSHARF 
algorithm. This fact prevents the general use of the MSHARF 
algorithm in practice. 

It is also important to mention that although the members 
of the SHARF family of adaptive algorithms, that includes the 
MOE, SHARF, and MSHARF algorithms, attempt to minimize 
the output error signal, these algorithms do not present a 
gradient descent convergence characteristic, since they were 
derived by using a convergence concept from the hyperstability 
theory. 

F. The Steiglitz and McBride Algorithm 

In [63], Steiglitz and McBride developed an adaptive algo- 
rithm attempting to combine the good characteristics of the 
output error and equation error algorithms, namely unbiased 
and unique global solution, respectively. In order to achieve 
these properties, the so called Steiglitz and McBride (SM) 
algorithm is based on an error signal (:S,fl ( r r  ) that is a linear 
function of the adaptive filter coefficients, yielding a unimodal 
performance surface, and has a physical interpretation similar 
to the output error signal, leading to an unbiased global 
solution. The ( : .s,tf(rr , )  error signal is given by 

The gradient vector associated to this error signal is 

(39) 

Using the small step approximation, we can write 

leading to the updating equation 

In [8], Fan and Jenkins presented a complete family of 
adaptive algorithms based on the original SM method. In fact, 
all members of this family are asymptotically equivalent, i .e.,  
they have identical steady state characteristics, whereas the 
transient properties of the convergence process may vary. The 
most relevant properties of the SM algorithm are: 
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Property 13: In a suficient order case ( i i *  2 O), if the 
perturbation signal 7 ~ ( 7 1 )  is a white noise, all global mini- 
mum points of the performance sugace associated to the SM 
algorithm are described by [64] 

(42) 
A*(,-') = A(q-')C(q-') 

with C(y-l) = ~~~~o q q P k .  It means that all global mini- 
mum solutions have included the polynomials describing the 
unknown system plus a common factor C(q-') present in the 
numerator and denominator polynomials of the adaptive filter. 
On the other hand, if the perturbation signal is a colored 
noise, the final solution is biased when compared to the OE 
global solution, with the degree of bias being a function of the 
characteristics of the disturbance signal. 

In an insufficient order case (n* < O), the solution of the 
SM algorithm is always biased compared to the OE algorithm 
global solution [60]. Also, when n* < 0, the SM algorithm may 
present multiple solutions [ 131. 

It should be mentioned that when n* < 0, although the 
solutions of the SM and OE algorithms are different, there 
are some cases where their distance is not easily measurable 
even by a numerical computer [ 131. However, these cases are 
completely unpredictable and this assumption of equality can 
not be generalized. 

" q - ' , O )  
is stable and the perturbation signal is a white noise, then 
the SM algorithm is globally stable if at least one of these 
conditions is satisfied [13], [58], [64]: - fin = 1. - n* < 0 and 
the signallnoise ratio ~~,~~~~~ is sufficiently small; - n* 2 0 

and the signallnoise ratio :$'{:;! is sufficiently large; 
This result shows that in some cases the SM algorithm does 

not require a pole monitoring procedure during the adaptation 
process to maintain stability. However, since these are specific 
cases, the stability monitoring is necessary in general. 

c B*(,-l) = B(q-l)C(q-l)  

Property 14: If the adaptive filter initial condition 

G. The Bias Remedy Equation Error Algorithm 

Analyzing the convergence of the equation error (EE) 
algorithm, it can be concluded that the presence of bias on 
the algorithm solution is due to the definition of the equation 
error information vector +EE(n) that includes past samples of 
the unknown system output y(n).  This signal y(n) includes 
information related to the perturbation signal 4 7 ~ ) .  One way 
to avoid this bias on the global solution could be obtained by 
subtracting the perturbation signal from the EE information 
vector. However, in practice this additive noise signal is not 
directly available. An alternative solution in this case is to use 
the output error signal, since this signal can be considered a 
good estimate for the perturbation noise as the adaptive process 
converges. Hence, using this technique, the information vector 
can be expressed as 

( fl h + 1 )  

where e O E ( n )  = [ e o ~ ( r ~  - ,i) I nT, and the parameter 
r is used to control the amount of bias that is eliminated and 
the stability of the adaptive algorithm. 

Using the approach above described, Lin and Unbehauen 
[40] developed the so called bias remedy least-mean-square 
equation error (BRLE) algorithm described by 

i ( n  + 1) = &7) )  + / L P E E ( ~ , ) ~ B B L E ( T L )  (44) 

The properties of the BRLE algorithm are [40]: 
Property 15: The BRLE algorithm is globally stable 

if all the conditions below are satisfied - 0 5 r 5 
0 < / 1 <  

m%n (k, m ) ,  where A,,,, is the largest eigenvalue of 

E [ 4 E R L E ( . l , , ) ~ B R L E ( 7 1 ) ] ,  and (T is a suficiently small positive 
number. 

The first condition establishes an upper limit for r ,  less or 
equal to one, necessary to guarantee the stability of the BRLE 
algorithm. In practice, there is a trade-off between bias and 
stability of the BRLE algorithm: The larger r is, less biased 
is the algorithm, however the more unstable the convergence 
tends to be. The second stability condition presents the range 
of the variable p that guarantees a stable global convergence 
of the BRLE algorithm. 

Property 16: In a suficient order case (n* 2 0), ifr = 1 
and the conditions of the previous property are satisfied, then 
the BRLE algorithm converges to a solution described by 

- T  

(45) 

with C(q- ' )  = C ; = O c k q - k .  It means that all solutions 
have included the polynomials describing unknown system 
plus a common factor C(4-l) present in the numerator and 
denominator polynomials of the adaptive jilter. 

H. The Composite Regressor Algorithm 

The Steiglitz and McBride (SM) algorithm previously de- 
scribed can be considered the first attempt to combine the 
characteristics of two distinct algorithms, namely equation 
error and output error. In the SM algorithm, the composite 
characteristic is implicit in the definition of the eSM(n) error 
signal. In [34], Kenney and Rohrs proposed the composite 
regressor (CR) algorithm based on the idea of combining 
two elementary adaptive algorithms, the equation error and 
modified output error. This method, however, uses a weighting 
parameter that allows a better control of the final characteris- 
tics of the adaptive algorithm. The CR algorithm is described 

&71 + 1) = &n) + /AecR(n)4cR(n , )  (46) 

where e ~ ~ ( n )  and &CR(71) are given by weighting of the 
respective error signals and information vectors of the EE and 
MOE algorithms as follows 

by 
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with 0 5 y 5 1. 
In terms of convergence characteristics, clearly the CR 

algorithm must present intermediate properties between its two 
basic algorithms, EE (7 = I )  and MOE (y = 0), as is shown 
in [34]. 

I .  The Composite Error Algorithm 

Another algorithm for IIR adaptive filtering that applies 
Kenney’s technique of explicit combination was presented in 
[50] using the equation error and the original output error 
algorithms. The so called composite error (CE) algorithm is 
described by 

The main advantage of combining the EE and OE algo- 
rithms is to obtain a gradient descent algorithm that can present 
good performance even in cases of insufficient order identifica- 
tion. In fact, the CE algorithm as presented in (49)-(51) can be 
interpreted as an on-line version of a graduated nonconvexity 
(GNC) method [65] if the weighting parameter [j is made 
time-varying with value decreasing from [j = 1 to /j = 0. In 
[ 181, Gerald et al. present a slightly modified version of the CE 
algorithm for the echo cancellation configuration. In [20], Hall 
and Hughes present another special case of the CE algorithm 
where the weighting parameter /j repeatedly switches its value 
from / j  = 1 to /-I = 0 and viceversa. Although these distinct 
versions may be visualized as algorithms with a common 
central idea, it must be noticed that each method has individual 
characteristics of implementation and convergence behavior 
that are presented in the respective literature. 

1V. SIMULATIONS 

Although there are many important works [9], [lo], [12], 
[30] on the convergence of adaptive algorithms, the most 
common form to analyze the convergence process character- 
istics is through the use of computational examples. In this 
section, some computational simulations are presented in order 
to illustrate some of the properties associated to the algorithms 
used in adaptive IIR filtering. The example chosen consists of 
the identification of a second-order plant with transfer function 
[26l, [511 

with an adaptive filter described by 

leading to an insufficient order identification problem. The 
input signal is a Gaussian white noise with zero mean and 
unity variance. 

A summary of the results for the different algorithms is 
given in Table 11. The characteristics of the solution obtained 
by each algorithm are following described: 

The EE algorithm converged to the optimum point of 
the MSEE surface, as illustrated in Fig. 4. The solution is 
biased with respect to the MSOE global optimum due to the 
insufficient order nature of the problem. 

The MSOE performance surface is multimodal, what makes 
the convergence of the OE algorithm to the global optimum 
of the adaptive filter conditioned to the initial point (see Fig. 
5 and Fig. 6). 

The MOE algorithm presented an unacceptable behavior due 
to the insufficient order nature of the identification process, 
converging to an apparently meaningless stationary point. 
Observe in Fig. 5 that the MOE algorithm does not even 
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TABLE I1 
SIMULATION CHARACrERlSTlCS 

Adaptive 
Algorithm 

EE 
OE 
OE 

MOE 
SHARF 

MSHARF 
SM 
SM 

BRLE 
BRLE 

CE 
CE 
CE 

Algorithm 
Parameters 
p = 0.001 
p = 0.001 
p = 0.003 
p = 0.003 

p = 0.003; D(q-l)  = 1 - q-' 
p = 0.003;nd = 1 

p = 0.0005 
p = 0.0005 

p = 0.001; r = 0.5 
p = 0.003; r = 1.0 

p = 0.001; ,f? = 0.04 
p = 0.001; ,f? = 0.60 
p = 0.003; ,f? = 0.04 

Fig. 6. Trajectories of the adaptive algorithms with initial point (11) = 
[0.5: -0.21 on the MSOE performance surface: A - OE ( / I  = 0.003),  B - 
SM (11 = O.OOOj) ,  and C - CE (11 = 0.001 : ,j = 0.04). 

converge to the local minimum of the MSOE performance 
surface. 

The SHARF and MSHARF convergence properties are 
dependent on the additional MA filtering characteristics. In 
this set of simulations, the order of the MA filter was chosen 
equals n d  = 1 for both algorithms. For the SHARF algorithm, 
where the filter is time-invariant, the additional polynomial 
was set to D(4- l )  = 1 - q- ' .  Since n* < 0 the consistency 
of the SHARF algorithm can not be guaranteed. In fact, as 
can be observed from Table 11, both algorithms SHARF and 
MSHARF presented a poor convergence behavior similar to 
the MOE algorithm. 

Despite the insufficient order adaptive filter, the SM method 
converged to a point extremely close to the MSOE global 
minimum point, independent of the initial point, as can be 

Initial 
Point 

[-0.5; +0.1] 
[+0.5; -0.21 
[-0.5; +O.l]  
[-0.5; +0.1] 
[-0.5; +0.1] 
[-0.5; +0.1] 
[+0.5; -0.21 
[-0.5; +0.1] 
[-0.5; +0.1] 
[-0.5; +0.1] 
[-0.5; +0.1] 
[+0.5; -0.21 

Number of 
Iterations 

w 6000 
= 4000 

w 10000 
M 40000 
w 40000 
w 40000 
M 3000 
M 4000 
M 8000 

w 80000 
= 4000 
M 3000 

w 22000 

Final 
Point 

'[+0.050; +0.884] 
[-0.311; +0.906] 
[+0.114; -0.5191 
[+0.050; -0.8521 
[+0.050; -0.8521 
[+0.050; -0.8521 
[-0.312; +0.905] 
[-0.312; +0.905] 

[+0.049; -0.8261 
[-0.306; +0.907] 
[-0.146; +0.942] 

[+0.050; +0.827] 

[-0.306; +0.907] 1 

verified in Table 11. However, as was pointed out before in 
this paper, this excellent behavior does not occur in general 
and in fact can not be predicted in practice. 

The BRLE algorithm presented a convergence behavior 
similar to the EE algorithm when the bias-remedy parameter 
T was made smaller than 0.5 with ,U = 0.001. However, with 
7 2 0.6 the algorithm became extremely slow and with T M 1 
it started converging to a meaningless point, as shown in Fig. 
4. 

The simulations with the CR algorithm were not included 
here, since both EE and MOE algorithms presented conver- 
gence problems. The same problems are expected to occur 
with the CR algorithm. 

The CE algorithm presented excellent properties when the 
weighting parameter was kept in the interval 0.04 5 ,Ll << 1. 
In fact, within those limits the performance surface associated 
to the algorithm is unimodal and the bias between its minimum 
and the MSOE global minimum is negligible, as can be 
inferred from Table 11. However, with ,Ll M 1 the convergence 
point presents a significant bias with respect to the MSOE 
global minimum (see Fig. 6). 

From the previous example, the reader can not conclude that 
a given algorithm is the best choice in general, since in slightly 
distinct situations the answer could be different. In fact, the 
example presented is not meant to be conclusive. In practice, 
the choice of the most appropriate adaptive IIR algorithm is 
not an easy task. The properties of the algorithms as analyzed 
in this paper are certainly useful tools and can be used to 
choose the most adequate algorithm. 

V. CONCLUSION 

The purpose of this review paper has been to outline some 
of the issues involved in the choice of an adaptive IIR filtering 
algorithm. Several well known algorithms have been presented 
in a unified form. Emphasis was placed in providing a sim- 
ple and general framework that enables easy understanding 
of the interrelationships and convergence properties of the 
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algorithms. Simulations were included to illustrate some of 
the results surveyed. 
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