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Efficient Lattice Realizations of Adaptive IIR Algorithms

Sergio Lima Netto and Panajotis Agathoklis

Abstract—Computationally efficient adaptive IIR-filter algorithms are
presented based on lattice realizations allowing the adaptive filter stability
to be easily monitored. New simplified recursive-in-order equations relat-
ing the parameters of the direct-form realization with the ones of two
lattice realizations are presented. These equations lead to a simplified
technique to compute the regressor vector and to a general method to
implement any adaptive IIR algorithm using lattice realization. Results
indicate that the proposed lattice-based algorithms converge to a set of
parameters that realize the same transfer function as the corresponding
direct-form algorithms.

Index Terms—Adaptive IIR filters, lattice structure.

I. INTRODUCTION

Adaptive IIR filters constitute a potential alternative to adaptive
FIR filters as they are suitable for modeling real systems with sharp
resonances using significantly fewer coefficients. Standard adaptive
IIR filter algorithms are commonly presented in the literature based
on the direct-form realization to obtain a simpler understanding of
the nature of the respective algorithm as well as of its convergence
properties. The direct-form realization, however, is not suitable for
most practical implementations because it does not allow an efficient
on-line stability testing, which is required by several adaptation
algorithms to avoid filter instability during the convergence process.
Consequently, several alternative structures have been considered for
the implementation of adaptive IIR filter algorithms.

The lattice realization [2], [3], [6] is an example of a filter
structure, the stability of which can be easily ensured in real time,
making this structure well suited for adaptive IIR filtering. Initial
attempts to use the lattice structure have led to computationally
complex adaptive algorithms [5], [11]. Subsequent efforts to
simplify [1] and accelerate [14] these algorithms have led to
parameter drift during the convergence process or further increase
in the computational complexity. More recently, in [8], [12],
and [13], lattice-based adaptive IIR algorithms with guaranteed
convergence and better computational complexity have been
proposed.

This correspondence deals with the lattice-based implementation
of adaptive IIR filter algorithms using recursive-in-order equations
for the numerator and denominator polynomials of the adaptive filter
transfer function, as opposed to the matrix approach used in [8].
This results in simpler recursion equations, and it also allows the
implementation of adaptive algorithms from the equation error (EE)
family of algorithms (e.g., the bias-remedy EE [7] and the composite
algorithms of [9] and [10].) The computationally efficient algorithms
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Fig. 1. Block diagram of the equation-error scheme.

are then obtained through a simplification in the gradient vector
first used in [13]. In that sense, although the proposed approach
presents computational complexity comparable with the methods
given in [8] and [12], it is said to be more general as it can be used
to implement any given adaptive IIR-filter algorithm using lattice
structures.

The correspondence is organized as follows. In the next section,
the direct-form EE algorithm is given following a general framework
for the description of adaptation algorithms. Later, the two-multiplier
lattice structure is presented along with a new technique for finding
a lattice realization of a given transfer function. In Section IV, using
that relationship, we present a computationally efficient implemen-
tation of the EE adaptation algorithm based on the two-multiplier
lattice realization. Additionally, directions are given to extend the
proposed method to other IIR adaptation algorithms and to the
normalized lattice realization. Computer simulations are then included
to demonstrate the validity and the usefulness of the proposed
techniques.

II. A DAPTIVE IIR ALGORITHMS

Fig. 1 depicts the basic block diagram of a general adaptive system.
In this figure

x(n) input signal;
y(n) desired output or reference signal;
ŷ(n) adaptive filter output signal;
eEE(n) so-called EE signal.

Using the direct-form realization, the adaptive filter is described by

ŷ(n) =
B̂(q; n)

Â(q; n)
fx(n)g (1)

with Â(q; n) = 1 + n

i=1
âi(n)q

�i and B̂(q; n) = n

j=0

b̂j(n)q
�j, whereq�i is the delay operator defined byq�ifx(n)g =

x(n � i).
The basic form of a general adaptive filtering algorithm can be

written as

�̂��(n+ 1) = �̂��(n) + �(n)e(n)�̂(n) (2)

where

�(n) gain factor that can be a matrix or a scalar;
e(n) estimation error;
�̂(n) regressor or information vector associated to the respective

adaptation algorithm.

In addition,�̂��(n) is the adaptive filter coefficient vector that, for the
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direct structure characterized above, is defined as1

�̂��d(n) = â1(n) � � � ân (n) b̂0(n) � � � b̂n (n)
T

: (3)

Following (2), the EE algorithm that minimizes the mean square
equation error is described by

e(n) � eEE(n) = Â(q; n)feOE(n)g

= Â(q; n)fy(n)g � B̂(q; n)fx(n)g (4a)

�̂(n) � �̂EE(n)

= [�y(n� 1) � � � � y(n� nâ) x(n) � � � x(n� nb̂)]
T
: (4b)

III. T HE TWO-MULTIPLIER TAPPED LATTICE IIR REALIZATION

As described in [2], a rational transfer function of the form

H(z) =
BN(z)

AN (z)
=

b0 + b1z
�1

+ � � �+ bNz
�N

1 + a1z�1 + � � �+ aNz�N
(5)

can be implemented using an alternative set of parameters�̂��2` =

[k1 � � � kN h0 � � � hN ]
T , corresponding to the two-multiplier lat-

tice realization obtained from

Am�1(z) = [Am(z)� kmAm(z
�1

)z
�m

]=(1� k
2

m) (6a)

Bm�1(z) =Bm(z)� Am(z
�1

)z
�m

hm

m = N; � � � ; 1 (6b)

where the auxiliary polynomialsAm(z) andBm(z) are defined as

Am(z) = am; 0 + am; 1z
�1

+ � � �+ am;mz
�m (7a)

Bm(z) = bm; 0 + bm; 1z
�1

+ � � �+ bm;mz
�m

m = N; � � � ; 1 (7b)

with am; 0 = 1 such thatkm = am;m, hm = bm;m for m =

N; � � � ; 1, andh0 = b0; 0.
Using the�̂��2` parameters, the output signaly(n) can be calculated

by

Fi(n) =Fi+1(n)� ki+1Gi(n� 1)

i = N � 1; � � � ; 0 (8a)

Gj(n) =Gj�1(n� 1) + kjFj�1(n)

j = 1; � � � ; N (8b)

y(n) =

N

j=0

hjGj(n) (8c)

with FN (n) = x(n) andG0(n) = F0(n). An alternative approach
to implement theH(z) transfer function while still using thê���2`
coefficients results from the relationships given in the following
lemma.

Lemma 1: Consider theAm(z) andBm(z) polynomials as given
in (7) and the parameter vector̂���2`. Then, the recursive-in-order
equations

Am(z) =Am�1(z) +
km

km�1

� [Am�1(z)� (1� k
2

m�1)Am�2(z)]z
�1 (9a)

Bm(z) =Bm�1(z) +
hm

km
[Am(z)� (1� k

2

m)Am�1(z)]

m = 2; � � � ; N (9b)

1The subscriptsd and ` will be used throughout the text to associate a
given variable, respectively, to the direct-form or lattice realizations. More
specifically, the subscripts 2` and 4̀ will refer to the two-multiplier and
normalized lattice structures, respectively.

hold, with A0(z) = 1, A1(z) = 1 + k1z
�1, and B1(z) =

(h0 + h1k1) + h1z
�1.

In addition, withA0

m(z) = Am(z)� 1 = a1z
�1

+ � � �+ amz
�m,

(9a) leads to

A
0

m(z) =A
0

m�1(z) +
km

km�1

� [Am�1(z)� (1� k
2

m�1)Am�2(z)]z
�1 (10)

for the same initial conditions forAm(z) and values ofm as before.
Proof for this lemma is obtained from simple algebraic manip-

ulation of (6) for the filter described by (5). In the next section,
we indicate how the recursions given in Lemma 1 can be used to
implement lattice-based algorithms for adaptive IIR filters.

IV. EFFICIENT LATTICE-BASED

ALGORITHMS FOR ADAPTIVE IIR FILTERS

Equation (2) indicates that the implementation of an adaptive IIR
algorithm requires the calculation of a residual error signal and of
an information vector. Those basic procedures fundamentally consist
of processing present or past samples ofx(n), y(n), ŷ(n), or any
other auxiliary signal, with the available numerator or denominator
polynomials of the adaptive filter. Hence, in order to derive lattice
IIR algorithms, it is then necessary to find a possible way to perform
any of that additional processing based solely on the coefficients�̂��2`.
For that, we must first generalize recursions (9) and (10) to the time-
varying coefficient case using the so-called small-step approximation
[4].

The proposed method to derive lattice-based adaptation algorithms
is then accomplished by implementing the direct-form version of the
algorithm, using, however, the lattice set of coefficients���2` through
the time-varying extensions of the recursions given in Lemma 1. In
that way, we have that̂�`(n) = �̂d(n), and lattice-based algorithms
are efficiently implemented requiringO(N) multiplication/division
operations, as opposed to theO(N2

) operations required by earlier
lattice adaptation algorithms [5], [11]. Thus, the algorithms proposed
here, along with the ones presented in [8], [12], and [13], present
similar computational complexity to their equivalent direct-form
counterparts with the additional property of allowing real-time pole
monitoring.

Property 1: The proposed lattice version of any given adaptive
IIR-filter algorithm is equivalent to its direct-form standard imple-
mentation in the sense that both methods present sets of stationary
points corresponding to the same input–output descriptions of the
adaptive filter.

This result was first verified in [12] based on the fact that the
stationary points of an adaptive algorithm are the solutions of

E[e(n)�̂(n)] = 0: (11)

For equivalent direct-form and two-multiplier lattice realizations, the
residual errors are equal, and using the proposed simplification, the
corresponding regression vectors are also identical. Consequently,
one has that

E[ed(n)�̂d(n)] = 0() E[e`(n)�̂`(n)] = 0: (12)

Property 1 indicates the steady-state equivalence between the pro-
posed lattice approach and the corresponding direct-form algorithm.
The transient part of the adaptation process, on the other hand, is not
equivalent to these two schemes, and the convergence conditions for
the proposed method are still an open problem.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 1, JANUARY 1998 225

TABLE I
SUMMARY OF THE EFFICIENT TWO-MULTIPLIER LATTICE EE ADAPTIVE ALGORITHM

Table I includes an easy-to-follow routine describing the compu-

tationally efficient two-multiplier lattice version of the EE algorithm,

for which the following comments apply.

1) To avoid division problems instep 1, the coefficientŝkm(n)

should be tested against getting too close to zero. In those cases,

the recursions shown in Table I should be skipped without

causing any problem to the algorithm’s convergence process.

2) The adaptive filter coefficients instep 4can also be updating

by a quasi-Newton type algorithm similar to the one described

in [14] for the direct-form realization.

3) The stability monitoring instep 5 must check if the absolute

value of any coefficient̂km(n) becomes greater or equal to

unity. If that happens, the coefficient must be stabilized by

forcing its value to be inside the open intervalk̂m(n) 2

(�1; 1) [3].

Example 1: Consider the system identification example of [11],

where the plant is defined as

H(q) =
0:0154 + 0:0462q�1 + 0:0462q�2 + 0:0154q�3

1� 1:99q�1 + 1:572q�2 � 0:4583q�3

(13)

which yields the direct-form and two-multiplier coefficient vectors,

respectively, given by

���d =

a1
a2
a3
b0
b1
b2
b3

=

�1:9900

1:5720

�0:4583

0:0154

0:0462

0:0462

0:0154

; ���2` =

k1
k2
k3
h0
h1
h2
h3

=

�0:8756

0:8355

�0:4583

0:0856

0:1455

0:0768

0:0154

:

(14)

Assume an adaptive filter withN = 3, and let the input sig-
nal be a Gaussian white noise with zero mean and unit vari-
ance. Consider the cases with and without a perturbation signal
consisting of a zero-mean white noise of variance�2v = 0:007,
corresponding to a signal-to-noise ratio of�2y=�

2

v = 15:1 dB
and infinity, respectively. Fig. 2 depicts the convergence of the
coefficient vector using the EE algorithm realized by the two-
multiplier lattice structure for the two cases. It can be noted that
in the presence of perturbation, the adaptive filter converged to a
biased solution with respect to the optimal one indicated by doted
lines. For the second case the optimal solution was reached as
expected.

Although this correspondence focuses on lattice realizations of
the EE algorithm, extension of the proposed method to other
adaptive IIR-filtering algorithms is easily accomplished. For
that, one must only compute the corresponding error signal and
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(a) (b)

(c) (d)

Fig. 2. Lattice adaptive convergence,�` = 0.06. With perturbation noise: (a) Two-multiplier reflection coefficients and (b) two-multiplier forward coefficients.
Without perturbation noise: (c) Two-multiplier reflection coefficients and (d) two-multiplier forward coefficients.

regressor vector based on their original direct-form definitions
by using the time-varying extensions of the recursion-in-order
equations (9) and (10), as it was illustrated here for the EE
algorithm.

A. Normalized-Lattice Adaptive IIR Algorithms

The extension of adaptive IIR algorithms from the two-multiplier
lattice to the normalized lattice realization follows naturally from the
relationships existing between the coefficients of these two structures.
Indeed, the normalized lattice structure has the set of coefficients
�̂��4` = [�1 � � � �N h00 � � � h0N ]

T that are related to the entries of
�̂��2` by [3]

sin �i = ki; i = 1; � � � ; N (15a)

h0j =
hj
�j

; j = 0; � � � ; N (15b)

where the parameters�j are given by

�j�1 = �j cos �j�1; j = N � 1; � � � ; 1 (16)

with �N = 1. Using those relationships with the equations given in
Lemma 1, the following holds.

Lemma 2: Consider theAm(z) and Bm(z) as defined in (7).
For the normalized lattice realization, those polynomials may be
recursively computed as

Am(z) =Am�1(z) +
sin�m

sin�m�1

� [Am�1(z)� cos
2 �m�1Am�2(z)]z

�1 (17a)

Bm(z) =Bm�1(z) cos �m +
h0m

sin�m

� [Am(z)� cos
2 �mAm�1(z)]

m = 2; � � � ; N (17b)

with A0(z) = 1,A1(z) = 1+sin �1z
�1, andB1(z) = (h00 cos �1+

h01 sin �1) + h01z
�1.

As a consequence of (16a), withA0

m(z) as before, one has

A0

m(z) =A0

m�1(z) +
sin�m

sin�m�1

� [Am�1(z)� cos
2 �m�1Am�2(z)]z

�1: (18)

As shown in [12], exponential stability of the time-varying nor-
malized lattice realization is guaranteed as long as the reflection
coefficients satisfyj�i(n)j � �=2� � for all n and a positive�.
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V. CONCLUSIONS

In this correspondence, relationships of the transfer function poly-
nomials of the direct-form and two lattice realizations were in-
troduced. It was shown that these equations yield computationally
efficient implementation of lattice-based algorithms for adaptive IIR
filters, including members of the equation error family of algorithms,
requiringO(N) multiplications per iteration, whereN is the filter
order. The proposed lattice-based implementation led to a set of pa-
rameters that realize identical transfer functions to the ones obtained
by corresponding direct-form algorithms.
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Adaptive Fractionally Spaced Blind
CMA Equalization: Excess MSE

I. Fijalkow, C. E. Manlove, and C. R. Johnson, Jr.

Abstract— The performance of the constant modulus algorithm
(CMA)—a reference algorithm for adaptive blind equalization—is
studied in terms of the excess mean square error (EMSE) due to the
nonvanishing step size of the gradient descent algorithm. An analytical
approximation of EMSE is provided, emphasizing the effect of the
constellation size and resulting in design guidelines.

Index Terms—Adaptive blind equalization, excess mean square error,
multichannel equalization.

I. INTRODUCTION

Digital communication is subject to intersymbol interference (ISI)
due to nonideal pulse shaping, multipath propagation, and residual
clock or carrier phase error. ISI is more severe when the channel
dispersion time (or channel time span) cannot be neglected with
respect to the input signal symbol time duration, thereby making
its removal all the more crucial. Traditionally, channel equalization
(i.e., input sequence extraction directly from the received signal) and
identification (with input sequence recovery, e.g., by Wiener filtering
of the observed signal using the channel estimate) are performed
using a training sequence. However, in many applications, either
the training sequence is unavailable, or the bandwidth occupied by
the training sequence is to be spared for input carrying information.
Consequently, one pursuesblind equalization, i.e., without training
nor any a priori knowledge of the channel dynamics. Due to its
potential benefits, blind equalization has become an important topic
in digital communications. Blind methods use the received signal
sequence and somea priori knowledge of the input sequence statis-
tics. Nonminimum phase channel equalization was performed using
methods based on high-order statistics or other nonlinearities that are
effective only with non-Gaussianly distributed input sequences [4].
Contrast-based methods (see [13], for example) or adaptive Bussgang
algorithms (see [1]) have been proposed and studied over the last ten
years. In this correspondence, we study the most popular adaptive
blind equalization Bussgang algorithm (the Godard algorithm [7]) or
constant modulus algorithm (CMA) [15] in the context of nonconstant
modulus data with spatio-temporal diversity.

The constant modulus (CM) criterion minima have been proven
to achieve zero-forcing fractionally spaced equalization (see [5] and
[11] for a simple algebraic proof) under various ideal conditions,
including the absence of noise. Even under the presence of a small
amount of additive channel noise, CM minima were proved to
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