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A new numerical approach for designing FIR digital filters is proposed. The method
is able to compromise maximum stopband attenuation and minimum stopband energy
requirements. The approach is based on the weighted-least-squares (WLS) method using,
at each iteration, a different weight function, which is made constant within a given
frequency interval. In that manner, digital filters with partially equiripple and partially
WLS-like stopbands are efficiently obtained. Generality of the method makes it suitable
for the design of linear- and arbitrary-phase FIR filters.

FIR Filters

WLS and Chebyshev Criteria

1. Introduction

The design of finite-duration impulse response digital filters is dominated in the
literature by the Chebyshev and the weighted-least-squares (WLS) approaches. The
Chebyshev scheme minimizes the maximum absolute value of an error function
between the prototype’s transfer function and a given ideal solution. For that
reason, Chebyshev filters are also said to satisfy a minimax criterion. The WLS
approach, which minimizes the mean-squared-value of the same error function as
the minimax approach, is characterized by a very simple implementation. Its basic
problem, however, is the resulting Gibbs oscillations which correspond to large
errors near discontinuities of the desired response.

The universal availability of minimax computer routines, including platforms
based on high-level programming languages, has motivated its spread use in many
problems where it is not the most appropriate solution. In fact, some applications
that use narrow-band filters, like frequency division multiplexing for communica-
tions, do require both the maximum stopband attenuation and the total stopband
energy to be considered simultaneously. For these cases, Adams' —3 has shown that
both the Chebyshev and WLS approaches are unsuitable as they completely dis-
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regard one of these two measurements in their design procedure. For that matter,
we propose a new approach for designing peak-constrained digital filters with low
stopband energy.

The organization of this paper is as follows: In the next section, the prob-
lem of designing linear-phase nonrecursive digital filters is presented. In Section 3,
the classical optimization methods for solving such approximation problem are de-
scribed. These methods include the Chebyshev and the WLS approaches, the Law-
son algorithm?, and the so-called Lim-Lee-Chen-Yang (LLCY) algorithm®. The last
two are seen as methods that implement the Chebyshev approach through a series of
WLS designs. In Section 4, a new method is given based on a simple modification of
the Lawson and LLCY algorithms, resulting in an excellent compromise of all good
properties associated to both the Chebyshev and WLS methods. Section 5 includes
extensions of the proposed method to the design of FIR filters with arbitrary phase.

2. Problem Formulation

Consider a nonrecursive filter of length N described by the transfer function

H(z) :Z h(nT)z™" (1)

and assume that wy = 27, such that 7' = 1. The frequency response of such filter is
then given by

N-1
H(e™) =3 h(n)e 3" = ") [ (w) (2)

n=0

where f(w) and H (w) are the phase and magnitude responses of H (/) respectively
defined as

iy _ o1 J Im[H ()]
f(w) = tan {Re[f{(ej“’)] } (3a)

(3b)

We concentrate our efforts here on linear-phase FIR filters, which are characterized
by a phase response é(w) linear on w, due to their practical importance. Assume
then that N is odd!, h(n) is symmetrical®. The frequency response of such filter
thus becomes

H(e) = el Z a, cos(nw) 4)

n=0

a0ther cases of N even and/or h(n) antisymmetrical can be dealt with in a very similar way®
and are not further discussed in this paper. The arbitrary-phase FIR case is treated later as an
extension of the linear-phase FIR problem.



with ¢ = (Nz_l), ap = h(c), and a, = 2h(c —n), for n = 1,... ,¢. Clearly, such
response corresponds to a linear-phase filter.

If e77°“H(w) is the desired frequency response and W (w) is a strictly posi-
tive weighting function, consider the weighted error function E(w) defined in the

frequency domain as

E(w) = W(w)[H(w) — H(w)] ()

The approximation problem for linear-phase nonrecursive digital filters resumes to
the minimization of some objective function of E(w) in such way that |E(w)| < 4,
and then

- )

|H(w) — H(w)| < W) (6)
Evaluating the weighted error function on a dense frequency grid with 0 < w; <
m,fori=1,...,MN, a good discrete approximation of E(w) can be obtained. For
practical purposes, for a filter of length N, using 8 < M < 16 is recommended.
Points associated to the transition band are disregarded, and the remaining fre-
quencies should be linearly redistributed in the passband and stopband to include

their corresponding edges. Thus, the following vector equation results

e = W (h — Ua) (7)
where

e =[Ew) Ews) ... Ewgn)]" (8a)
W = diag [IW (w1) W(w2) .. W(wgn)] (3b)
b= [Hwr) H@s) ... Hwgy)" (8¢)

1 cosw)  cos@wi) ... cos(cwr)
G| ) oo coslewn) 0

1 cos(wyy) coswgn) ... cos(cwgn)
a=laar ... aJ” (8e)

with M < M, as the original frequencies in the transition band were discarded.
An ideal lowpass filter is represented in Fig. 1, where J, is the passband max-
imum ripple, d, is the stopband minimum attenuation, and w, and w; are the
passband and stopband edges, respectively.
Based on these values, define

1

DB, = 20log,, (1% aB (9a)
1-0,

DB; = 20log;,(d,) dB
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Fig. 1. Typical lowpass filter specifications.

The design of a lowpass digital filter as specified in Fig. 1, using either the minimax
method or the WLS approach, is achieved making the ideal response and weight
functions respectively equal to®

1, 0fw<w
H(w)‘{o, wSw<T 10)
and
1, 0<w<w
Wiw) = {(5p/5s, ws <w<T (1)

3. Classical Optimization Approaches

3.1. Chebyshev Method

Chebyshev filter design consists of the minimization over the set of filter coefficients
of the maximum absolute value of E(w), i.e.,

| E@) [lo = min max [W(w)|H(w) — H(w)]] (12)

a 0<w<m

With the discrete set of frequencies, using Eq. (8), the Chebyshev method attempts
to minimize

| B@) llss & min max [Wih - Ual] (13)
Referring to Fig. 1, the Chebyshev method effectively minimizes

DB; = 20log,,(5) dB (14)
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Fig. 2. Typical lowpass magnitude response (passband in detail) of Chebyshev- (dash-dotted
curve) and WLS-based (solid curve) filters.

where 0 = max[d,,ds]. An important feature of Chebyshev filters is their equiripple

magnitude responses as seen in Fig. 2 (dash-dotted curve)”.

3.2. Wezughted Least-Squares Method
The weighted least-squares (WLS) approach minimizes

18 B = [ 1B@Pw = [ W) - Fe)k (15)
For the discrete set of frequencies, using Eq. (8), this objective function is estimated
by
[ BEw) | ~e'e (16)
the minimization of which is achieved with
a® = (UTW?U) ' UTW?h (17)

Referring to Fig. 1, the WLS objective is to maximize the passband-to-stopband
ratio (PSR) of energies

(18)

Ow” |ﬁ(w)|2dw
PSR = 10log,, | 2221 T ) g

f: |H (w)|2dw?
A typical lowpass digital filter designed with the WLS method is depicted in Fig. 2
(solid curve), where the large ripples near the band edges are easily identified.

3.3. Lawson and Lim-Lee-Chen-Yang Algorithms

In 1961, Lawson derived a scheme that performs Chebyshev approximation as a
limit of a special sequence of weighted least-p (L,) approximations with p fixed.



The particular case with p = 2 thus relates the Chebyshev approximation to the
WLS method. The Ly Lawson algorithm is implemented by a series of WLS approx-
imations using a varying weight matrix Wy, the elements of which are calculated
by *

Wit (w) = Wi (w)Bg(w) (19)
where
By (w) = |Eg(w)] (20)

Convergence of the Lawson algorithm is slow, as usually 10 to 15 WLS designs
are required in practice to approximate the Chebyshev solution. An efficiently accel-
erated version of the Lawson algorithm was presented in®. This approach is hereby
referred to as the Lim-Lee-Chen-Yang (LLCY) algorithm and is characterized by
the weight matrix Wy, recurrently updated by

Wit (w) = Wi (w)Beg (w) (21)

where Bey,(w) is the envelope function of By (w) formed by a set of piecewise linear
segments that start and end at consecutive extremals of By(w). Band edges are
considered extremal frequencies, and edges from different bands are not connected.
In that manner, labeling the extremal frequencies at a particular iteration k as w7,
for J =1,2,..., the envelope function is formed as®

(w— W})Bk (W}Jrl) + (W}Jrl — w) By (w})

(W3+1 —wy)

Bep(w) = ;wy <w<wiy (22)

Fig. 3 depicts typical cases of the absolute value of the error function (dash-
dotted curve) used by the Lawson algorithm to update the weighting function, and
its corresponding envelope (solid curve) used by the LLCY algorithm.

4. A New Approach

Comparing the adjustments used by the Lawson and LLCY algorithms, described
in (19)—(22), and seen in Fig. 3, with the piecewise-constant weight function used
by the WLS method, one can devise a very simple approach for designing digital
filters that compromise both minimax and WLS constraints. The new approach
consists of a modification on the weight-function updating procedure in such way
that it becomes constant after a particular extremal of the stopband of By (w), i.e.,

Wit (W) = Wi (w) Br(w) (23)

where, for the modified-Lawson algorithm, §(w) is defined as

Sws W (24)
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Fig. 3. Typical absolute error function B(w) (dash-dotted line) and corresponding envelope Be(w)
(solid curve).

and for the modified-LLCY algorithm, i (w) is given by

Bep(w), 0<w<wy

Br(w) = Bep(w) = {Bek(w}), Wh<w<T (25)

where w? is the J-th extreme value of the stopband of B(w) = |E(w)|. The passband
values of B(w) and Be(w) are left unchanged in Eqgs. (24) and (25) to preserve the
equiripple property of the minimax method. The parameter J is the single design
parameter for the proposed scheme. Choosing J = 1, makes the new scheme similar
to an equiripple-passband WLS design. On the other hand, choosing J as large as
possible, i.e., making w’% = =, turns the proposed scheme into the Lawson or the
LLCY algorithms.

An example of the new approach being applied to the functions seen in Fig. 3 is
depicted in Fig. 4, where w? was chosen as the fifth extremal in the filter’s stopband.

The computational complexity of WLS-based algorithms, like the algorithms
here described, is of the order of N3, where N is the length of the filter. This
burden, however, can be greatly reduced by taking advantage of the Toeplitz-plus-
Hankel internal structure of the matrix (UTW?2U) in (17), as mentioned in®?,
and by using an efficient grid scheme to minimize the number of frequency values,
as described in'®!!. These simplifications make the computational complexity of
WLS-based algorithms comparable to the one for the minimax approach. The WLS-
based methods, however, do have the additional advantage of being easily coded
into computer routines.

Example 1: To illustrate the utilization of the proposed approach, a lowpass filter
satisfying! N =95, DB, = 1 dB, w, = 270.0625 rad/s, and ws = 270.0804 rad/s
was designed for all possible values of 1 < J < 42. The resulting plot for DB, and
PSR, defined in (9b) and (18), respectively, is seen in Fig. 5(a). From this figure,
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Fig. 4. New approach applied to the functions in Fig 3: Modified-Lawson algorithm B(w) (dash-
dotted curve) and Modified-LLCY algorithm Be(w) (solid curve). Both curves coincide for w > w?.

one can easily verify the poor results obtained with the minimax (J = 42) and
WLS-like methods (J = 1), when considering both figures of merit simultaneously.
For the sake of comparison, the same filter was designed using the Dolph-Chebyshev
window as given in®, resulting in DBs = —26.66 dB and PSR = 21.26 dB.

The magnitude response of the particular case when J = 10 is seen in Fig. 5(b),
from where one can notice the partially WLS-like and partially equiripple (up to its
tenth extremal) stopband and the equiripple passband. These characteristics are
typical of the filters designed with the new approach.

Both modifications given in (24) and (25) were used for the design described
above yielding similar results. For all practical purposes, the modified-LLCY algo-
rithm was able, in general, to reach a good neighborhood (within 1% of the spec-
ifications) of its final solution in about 5 iterations less than the modified-Lawson
algorithm. However, when forcing the final results to be precise up to the third
decimal place of DB, = 1.000 (i.e., within 0.1%), the difference between the con-
vergence speeds became quite considerable, as the modified-LLCY algorithm needed
about 15 iterations and the modified-Lawson algorithm required the order of 200
iterations.

Example 2: In this example, a lowpass filter described by DBp =1 dB, DBs =
—45.64 dB, wp = 270.0625 rad/s, and ws = 270.0804 rad/s was designed with the
new approach. The filter length necessary to satisfy the prescribed specifications
was then measured for all possible values of 1 < J < 42. The resulting plot of V x J
is depicted in Fig. 6.

Notice that a small value of J may result in a very small increase of the filter
length compared to its minimum value. In this case, for example, the minimum
filter order was N = 95, obtained when J = 42 (which is equivalent to the minimax
approach), and for J = 5, we had N = 99. In that manner, an excellent compromise
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Fig. 5. Ex. 1 (a) DBs x PSR as functions of J. (b) Lowpass magnitude response (passband in
detail) when J = 10 using the new approach.

between DBs and PSR can be achieved with a small value of J, as demonstrated
in the previous example, with a very small increase of the filter length, as verified
here.

Example 3: In this example, a bandpass filter was designed using the new approach
for all distinct values of 1 < J < 23. The filter specifications were DBp = 1 dB,
we1 = (/2 —0.1) rad/s, wp = (7/2 — 0.05) rad/s, wpz = (7/2 + 0.05) rad/s,
wg2 = (/24 0.1) rad/s, and a filter length of N = 95. The plot of DBs x PSR for
this design is shown in Fig. 7(a), from which one can verify the poor performances
presented by the minimax (J = 23) and the WLS-like (J = 1) algorithms, if both
figures of merit are considered at the same time. The magnitude response of the
particular case when J = 10 is seen in Fig. 7(b).
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Fig. 6. Ex. 2 - Filter length N as a function of the extremal counter J.

Both the Lawson and the LLCY variations were used yielding very similar re-
sults. Once again, however, the LLCY version outperformed the modified-Lawson
with respect to convergence speed.

5. Arbitrary-Phase FIR Filters

The problem of designing arbitrary-phase nonrecursive filters is described by gen-
eralizing Eq. (7) to the complex domain, i.e.,

é = W(h —Ua) (26)
where

~ I I L T

h= [H(eﬂwl) H(eiw2) ... H(eJ“nn) (27a)
1 ef‘]wl 872]‘1.4)1 e*(N*l)‘]wl

. 1 edwr w0 e (N-Djw:

U= . : . . . (27b)
j_ e JwunN 6*2].“)1\71N e*(N*'l)]WMN

a=l[aga ...a]" (27¢)

with H(e/*) as defined in (2). The WLS minimization of &"¢& is then achieved by
~ ~ ~ ~ —1
a= [Re(UH) W2 Re(U) + Im(UH) W2 Im(U)] .
[Re(ﬂH) W2 Re(h) + Im(U") W2 Im(ﬁ)} (28)

In this case, however, the updating procedure for the weighting function can be
based on the auxiliary error function defined as

B(w) = W) [ ()] - |A(e)]] (29)
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Fig. 7. Ex. 3 (a) DBs x PSR as functions of J. (b) Bandpass magnitude response (passband in
detail) when J = 10 using the new approach.

instead of the original error function in (5).

Example 4: In this example, the proposed method is used to design a nonrecursive
filter, the desired response of which is specified as'2

= e ImY I<w<w
H Jwy — ) = =~ Wp
(e”) {0, ws <Kw<T

with w, = 270.06 rad/s, w, = 270.12 rad/s, and 7, = 12. In addition, we have
N =31 and 6,/0s = 10. The trade-off between DBs and PSR for this example
is depicted in Fig. 8. The case when J = 14, which is equivalent to the equiripple
solution, resulted in ¢, = 0.03538 and és = 0.003536. These values are considerably
better than the results mentioned in'%. Using J = 3, we obtain §, = 0.04427 and
d, = 0.004423, which are comparable to the results in'2, with an additional 3.2 dB

(30)



for the PSR, as seen in Fig. 8.
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Fig. 8. Ex. 4 - DBs x PSR as functions of J.

The resulting magnitude and group-delay responses are shown in Fig. 9(a) and
Fig. 9(b), with J = 3 (solid curve) and J = 14 (dash-dotted curve), respectively.
Notice how close the delay is in both cases to the specified value 7, = 12 in the
filter’s passband.

6. Conclusion

A simple method for designing FIR digital filters was presented. The method is
based on a modification of the so-called Lawson and Lim-Lee-Chen-Yang algorithms,
forcing the corresponding weight function to be constant during a given frequency
interval. The easy implementation of the method along with the resulting combina-
tion of the Chebyshev and WLS qualities indicate that the new approach represents
a very efficient form of compromising the stopband’s peak and energy constraints.
In addition, the method has shown to be extremely general in the sense that it is
suitable for approximating arbitrary-phase FIR filters.
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