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OPTIMIZATION OF FRM FILTERS

USING THE WLS-CHEBYSHEV

APPROACH*
Luiz C. R. de Barcellos,1 Sergio L. Netto,1 and
Paulo S. R. Diniz1

Abstract. This paper presents efficient methods for designing linear-phase finite impulse
response filters by combining the frequency-response masking (FRM) approach and the
weighted least-squares (WLS)-Chebyshev method. We first use the WLS-Chebyshev
method to design quasi-equiripple FRM filters, achieving better performances with respect
to the passband ripple or the stopband attenuation, when compared with the standard
FRM design. Then, by exploiting the concept of critical bands, introduced in this paper,
we present a method for designing modified FRM filters with a further reduction in the
computational complexity. This is achieved by properly relaxing the specifications for the
FRM base and masking filters and using the ability of the WLS-Chebyshev method to trade
off the minimum attenuation and the total energy in the filter’s stopband. Computational
savings are in the order of 10%–15% of the original number of coefficients of the standard
FRM design (using the concept of “don’t care” bands for the masking filters).
Key words: frequences-response masking, digital filter design, FIR digital filters, weight-
least squares method.

1. Introduction

The frequency-response masking (FRM) approach is a very efficient alternative
for designing linear-phase finite impulse response (FIR) digital filters with wide
passbands and sharp transition bands. Such a method, by allowing an increase
in the filter group delay, enables one to reduce the filter complexity (number of
multipliers and adders required per output sample) when compared with the stan-
dard design methods [6]. In fact, it has been verified, by means of an example, that
with the FRM approach without the concept of “don’t care” bands for the masking
filters, the complexity is reduced to about 48% of the complexity required by the
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standard minimax approach. When using the concept of “don’t care” bands, the
resulting computational complexity is about 35% of the standard minimax design.

The weighted least-squares (WLS)-Chebyshev method is a design approach
that attempts to minimize the stopband’s total energy and maximum ripple simul-
taneously [1]. As presented in [3], the WLS-Chebyshev method can be imple-
mented by a series of simple WLS designs, whose weight matrix is modified
at each iteration according to some error function determined in the previous
iteration.

In this paper, the FRM and WLS-Chebyshev methods are combined to design
quasi-equiripple FRM filters, improving their performance with respect to the
passband ripple and/or the stopband attenuation. This is achieved by properly
performing an iterative optimization procedure for the base, positive masking,
and negative masking filters, minimizing the margin for the error obtained by
the previously designed filters. Advantages of the proposed scheme over previous
FRM modifications [2]–[5] include the optimization of the FRM filter through a
series of quadratic subproblems that are straightforward to perform, presenting
suitable convergence characteristics such as a low complexity, robustness, and
speed.

It is then illustrated that just turning the FRM filter into a quasi-equiripple
solution is not very effective in achieving an overall order reduction, because it
does not take into account the different sensitivities to coefficient variation in each
band when designing the FRM subfilters. Using this motivation, the concept of
critical bands is introduced. These are two bands, one at each side of the transition
band of the overall filter, where there is a poor ripple cancellation between the
two FRM branches, and the resulting ripple becomes significant. We then use
the WLS-Chebyshev algorithm to design the base and masking filters, closely
constraining the peaks at these critical bands. The resulting further reduction in
the computational complexity of the resulting filter is approximately 15% of that
of the standard FRM approach.

The organization of this paper is as follows. In Sections 2 and 3, we describe
the main concepts behind the FRM and WLS-Chebyshev methods, respectively.
In Section 4, we use the WLS-Chebyshev method for iteratively designing quasi-
equiripple FRM filters. In Section 5, we define the critical bands and use this
concept for designing a modified FRM filter with a reduced computational com-
plexity. In Section 6, we combine the algorithms presented in Sections 4 and 5
to generate a design procedure for quasi-equiripple and computationally efficient
FRM filters. Examples are provided throughout the paper to illustrate the effec-
tiveness of the proposed techniques.
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Figure 1. Realization of a reduced-order FIR filter with the FRM approach.
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(c) Negative masking operation. (d) Resulting frequency-response.

Figure 2. FRM approach, showing the “don’t care” bands (single line) and the critical bands (double
lines below the frequency axis).

2. FRM approach

The basic block diagram for the FRM approach is shown in Figure 1. In this
scheme, the interpolated base filter presents a repetitive frequency spectrum,
which is processed by the positive masking filter, of order Nm+ , in the upper
branch of the FRM realization. Similarly, a complementary version of this
repetitive frequency response is cascaded with the negative masking filter, of
order Nm− , in the lower branch of the realization. In this procedure, both masking
filters keep some of the spectrum repetitions, which are then added together to
compose the desired overall frequency response. The magnitude responses of the
filter composing this sequence of operations are depicted in Figure 2, where the
resulting filter presents a very sharp transition band.

The cutoff frequencies θ and φ of the base filter of an even order Nb (see
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Figure 2) depend on the interpolation factor L and on the desired bandedge fre-
quencies ωp and ωr of the overall filter. The masking filters are simple FIR
filters with bandedge frequencies that also depend on L and on the bands of
the interpolated filter. The optimal value of L that minimizes the overall number
of multiplications can be obtained by estimating the orders of all subfilters for
various L and finding the best-case scenario as given in [8].

To determine the ripple specifications for each subfilter, we notice that in the
noncritical bands the resulting ripple is approximately the ripple of the corre-
sponding masking filter (depending on the frequency value) with a second-order
error term associated to the base filter, due to the almost-perfect cancellation of
the two FRM branches. Therefore, in these bands, the FRM subfilters can have
approximately the same ripple (about 98%) as the overall FRM filter. In the
critical bands, the ripple cancellation is poor, and the FRM subfilters should have
about 50% of the ripple allowed to the complete FRM filter. A detailed discussion
on the precise calculation of these ripples is provided in [6].

3. WLS-Chebyshev algorithm

In the WLS-Chebyshev approach, one is able to positively combine the large
attenuation characteristic of the Chebyshev (minimax) method with the low stop-
band energy characteristic of the WLS approximation methods [1]. In fact, the
WLS-Chebyshev design scheme yields a filter response with a partially equiripple
and partially least-squares-like stopband response. In [3] a very simple method
was proposed for designing WLS-Chebyshev filters.

If an N th-order FIR filter has symmetric impulse response with N even, its
amplitude response can be written as [4]

|Ĥ(e jω)| =
∣∣∣∣∣

N/2∑
i=0

â(i)trig(ω, i)

∣∣∣∣∣ , (1)

where â(i) are the filter coefficients and trig(ω, i) denotes a proper trigonomet-
ric function [4]. Using a dense grid of frequency values ωn for n = 1, . . . , F ,
equation (1) can be expressed as

ĥ = âT U, (2)

where

ĥ = [ Ĥ(e jω1) Ĥ(e jω2) . . . Ĥ(e jωF )]T (3)

â = [ â(0) â(1) . . . â(N/2)]T (4)

U =




1 trig(ω1) trig(2ω1) . . . trig(Nω1/2)

1 trig(ω2) trig(2ω2) . . . trig(Nω2/2)
...

...
...

. . .
...

1 trig(ωF ) trig(2ωF ) . . . trig(NωF/2)


 . (5)
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The WLS solution in practice minimizes the objective function

ε =
∑

n

r(ωn)E2(ωn), (6)

where r(ω) is a nonnegative weighting function and E(ω) is the amplitude error
with respect to the ideal response H(e jω), that is,

E(ω) = |H(e jω)| − |Ĥ(e jω)|. (7)

The WLS solution is then given by [4]

â∗ =
(

UT R2U
)−1

UT R2h (8)

where R is a diagonal matrix with samples of the weighting function, and h is a
vector with samples of the desired response, that is,

R = diag[ r(ω1) r(ω2) . . . r(ωF )]T (9)

h = [ H(e jω1) H(e jω2) . . . H(e jωF )]T . (10)

We can use a series of WLS designs to achieve the Chebyshev (minimax) solu-
tion by using in equations (6)–(9) a variable weighting function at each iteration
k, as given by [9]

rk+1(ωn) = βk(ωn)rk(ωn), (11)

where

βk(ωn) = |Ek(ωn)|∑
m

rk(ωm)|Ek(ωm)| . (12)

An example of such a function is depicted by the dashed curve in Figure 3a. An
accelerated version proposed in [7] updates rk(ωn) with the envelope of βk(ωn)

defined above. This envelope is determined by searching the peaks of |Ek(ωn)| for
every ωn and using a piecewise function to join these extreme points, as illustrated
by the solid curve in Figure 3a.

If the updating of the weighting function in equation (11) is made constant for a
given frequency interval ω ∈ [ω∗, π ], where ω∗ is the J th stopband peak, the re-
sulting frequency response becomes WLS-like within this band and equiripple in
the remaining frequencies [3]. In such a case, the modified envelope function is as
shown in Figure 3b, whereas the typical magnitude response of the corresponding
WLS-Chebyshev filter is as depicted in Figure 4.

The main advantage of the WLS-Chebyshev scheme is the total control over the
resulting response provided by the method. Such control is easily and completely
determined by the weighting function, which specifies the frequencies where one
accepts or desires more or less gain. Such an ability is very important for modi-
fying the FRM design to generate quasi-equiripple filters, as will be described in
Section 4.
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Figure 3. Weighting function βk (ωn): (a) Equiripple method, original (dashed curve) and accelerated
(solid curve) schemes; (b) WLS-Chebyshev method, classic (dashed curve) and accelerated (solid
curve) schemes.

4. Quasi-equiripple FRM filter

In the standard FRM design, the base and masking filters are designed to have
equiripple responses. This can be achieved with the WLS-Chebyshev method by
forcing ωJ = π in each basic filter design. To obtain a quasi-equiripple FRM
filter, we then use the error function between this initial filter design and the
desired response (see equation (7)), to adjust the weight function of the WLS-
Chebyshev method, as given by equation (12), to redesign the FRM base and
masking filters. The central idea here is to aim for an equiripple overall FRM
filter, instead of equiripple FRM subfilters, as occurs in the original FRM design.
The overall procedure can be made recursive until a predetermined number of
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Figure 4. Typical magnitude response of a WLS-Chebyshev filter with J = 5, illustrating the partially
equiripple and partially WLS-like stopband.

Table 1. Algorithm 1: Quasi-equiripple FRM algorithm using the WLS-Chebyshev scheme

Step 1. Perform standard FRM design and set aux = 0;
Step 2. Measure the error between the desired and the obtained

responses using equation (7);
Step 3. If the error is acceptable, then output the filter

design and stop;
Step 4. If aux < 3, then set aux = aux + 1;

Else, set aux = 1;
Step 5. If aux = 1, then object=base;

If aux = 2, then object=positive mask;
If aux = 3, then object=negative mask;

Step 6. Adjust the weighting function of the object filter
using equation (11), and redesign it with the
WLS-Chebyshev scheme using equation (8);

Step 7. Go to Step 2.

iterations has been performed or some filter characteristic remains unchanged in
consecutive iterations. In the proposed scheme, after the design of each FRM
basic filter, the error function is re-evaluated, and the weight function for the
subsequent basic filter is adjusted. The detailed algorithm for the proposed quasi-
equiripple design combining the FRM and WLS-Chebyshev methods is described
in Table 1 and illustrated in Example 1. In Step 6 of Algorithm 1, to determine
the coefficients of the object filter at hand, one must consider the coefficients of
the other filters fixed, as given by the previous iteration of the algorithm. Once the
object filter is optimized with the WLS-Chebyshev algorithm, it then becomes
fixed, and a different FRM subfilter is selected as the object filter. Such a loop
continues until convergence is achieved.
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(a) Complete magnitude responses.
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(b) Passband detail.
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(c) Stopband detail.

Figure 5. Magnitude responses of standard (dashed line) and quasi-equiripple (solid line) FRM filters
in Example 1.
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Table 2. Filter characteristics using several FRM designs in Example 1

Filter 1 Filter 2 Filter 3

A p (dB) 0.1978 0.1435 0.1861
Ar (dB) 40.16 42.39 40.39
Nb 64 64 60
Nm+ 37 37 37
Nm− 27 27 25
L 7 7 7
FRM order 485 485 457
Number of coefficients 66 66 63

Example 1. Consider the design of a lowpass filter with passband edge ωp =
0.65π , stopband edge ωr = 0.66π , maximum passband ripple Ap = 0.2 dB, and
minimum stopband attenuation Ar = 40 dB. The standard minimax FIR filter
requires an order N = 381, whereas the standard FRM filter (using the concept
of “don’t care” bands for the masking filters) satisfies the specifications with the
characteristics of Filter 1 in Table 2, requiring a total of 66 distinct coefficients.

Using the WLS-Chebyshev algorithm to optimize the FRM filter, as described
above, we obtain Filter 2, which is fully characterized in Table 2. The magnitude
responses of Filter 1 (dashed line) and Filter 2 (solid line) are depicted in Figure 5,
where one can clearly visualize the improvements in the passband ripple and the
stopband attenuation achieved when using the quasi-equiripple design.

In a heuristic attempt to reduce the order of the FRM filter, to exploit the
improvements resulting from the quasi-equiripple design, very little was achieved,
as illustrated by the setup Filter 3 in Table 2. In such an experiment, several combi-
nations of order reductions between the base and masking filters were attempted,
yielding the best-case scenario with respect to the overall number of distinct
coefficients given in Filter 3. As one can see, the resulting filter still satisfies
all desired specifications, while providing only a mild reduction in the number of
distinct coefficients, when compared to the previous two designs.

5. Efficient FRM filter

In this section, we consider the fact that in the FRM design there are two critical
bands where the ripples in the two FRM branches have poor cancellations. These
bands are the last passband of the interpolated base filter (or its complementary
filter) within the FRM passband and the first passband of the complementary in-
terpolated base filter (or of the interpolated base filter) within the FRM stopband.
These critical bands are represented by the double lines under the frequency axis
in Figure 2. An illustration of the concept of critical bands is seen in Figure 5.
In such a figure, the dashed line, which represents the magnitude response of the
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standard FRM filter, presents peaks at the very end of the passband and at the very
beginning of the stopband.

Based on the concept of critical bands, we then develop a new design tech-
nique to improve the FRM design using the WLS-Chebyshev scheme. The new
approach starts from the basic FRM design. We first locate the repetition of the
base filter spectrum which is responsible for the sharp transition of the filter. These
frequencies are given by [6]

ω1 = m
π

L
; ω2 = (m + 1)

π

L
, (13)

where m is the largest integer such that ω2 is immediately below the largest
cutoff frequency ωs of the masking filters. These two frequencies, ω1 and ω2,
are the centers of the first and second critical bands, respectively. Once these
frequencies are found, we can take into consideration the effect of the masking
filter responses over the base filter response, and estimate the resulting error as
given in equation (7) by considering

|H(e jω)| = |H+
m (e jω)H+

i (e jω) + H−
m (e jω)H−

i (e jω)|
= |H+

m (e jω)H+
i (e jω) + H−

m (e jω)[1−H+
i (e jω)]| (14)

over the interval ω ∈ [ω1, ω2]. As we are interested in optimizing the base filter,
we can map the frequency responses of the masking filters back to the frequency
interval ω ∈ [0, π ], yielding

|H(e jω)| = |H+
m (e jω′

)Hb(e
jω) + H−

m (e jω′
)[1 − Hb(e

jω)]|, (15)

where

ω′ = ω1 + (ω2 − ω1)
ω

π
(16)

if the positive masking filter has cutoff frequencies below the negative masking
filter, or

ω′ = ω2 − (ω2 − ω1)
ω

π
(17)

if the positive masking filter has cutoff frequencies above the negative masking
filter cutoff. This definition of ω′ means that depending on which of the two
branches is responsible for the last part of the passband, one needs to do a direct or
inverse frequency mapping, according to equation (16) or (17), respectively. The
last step is to determine the peak-constrained frequencies. For this project, we use
the first bandstop peak (‘sidelobe’) of the masking filter. In the frequencies above
this peak, it is assumed that the least-squares part of the base filter will cancel the
other peaks of the masking filters. Thus, in each iteration, we seek for the first
bandstop peak to determine where the envelope function is kept constant. Once
the peak-constrained frequencies are known, the optimization algorithm can be
applied to design the base filter. The masking filters are redesigned as described
in Section 4. The efficient FRM algorithm is summarized in Table 3. The main
difference between Algorithm 2 and Algorithm 1 is that the latter is iterative, with
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Table 3. Algorithm 2: Modified FRM algorithm using the WLS-Chebyshev scheme based
on the critical band concept

Step 1. Perform standard FRM design;
Step 2. Determine critical peak ω� in critical bands;
Step 3. Redesign the base filter with the WLS-Chebyshev

scheme using ωJ = ω� at critical bands;
Step 4. Measure the error between the desired and the obtained

responses using equation (7);
Step 5. Adjust the weighting functions using equation (11), and

redesign the masking filters using the WLS-Chebyshev
scheme to obtain a quasi-equiripple FRM filter.

Table 4. Number of distinct coefficients for several frequency specifications, with A p =
0.2 dB and Ar = 40 dB, using the standard and modified FRM algorithms

Specifications Standard FRM Efficient FRM
ωp ωs L No. of coefficients No. of coefficients

0.178π 0.180π 14 141 123
0.240π 0.245π 10 91 83
0.32π 0.33π 8 67 60
0.65π 0.66π 7 66 58

all FRM subfilters being redesigned one at a time until convergence of the FRM
overall filter is achieved, whereas in Algorithm 2 each FRM subfilter is redesigned
only once, aiming at an equiripple FRM filter.

Example 2. In Table 4, we see the design results for several frequency specifica-
tions and the corresponding interpolation factor L that minimizes the number of
distinct coefficients. In practice, the optimal value of L can be different for the
standard and modified FRM algorithms. By using the same value of L in both
algorithms, however, it is easier to compare the results, because the subfilters
will keep the same frequency specifications for both algorithms. Notice that in all
cases the modified FRM using the proposed WLS-Chebyshev algorithm results
in filters requiring considerably fewer multipliers than those obtained with the
standard FRM algorithm.

Example 3. Consider the specifications of Example 1. Analyzing the magnitude
response within the stopband’s critical band in Figure 6, we notice that the most
critical peak is the fifth one, if we initialize J = 1 at ω = ωr . Therefore, by
specifying J = 5 equiripple peaks in the WLS-Chebyshev design for the base
filter, we are able to constrain the overall response in the critical band. This
simplifies the specifications for the masking filters, which are redesigned as in
Section 4, aiming at an equiripple FRM filter. The resulting filter magnitude
response using such an algorithm is shown in Figure 7 (dashed line), along with
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Figure 6. Critical-band detail of magnitude responses of the FRM filter (continuous line) and FRM
base and masking filters (dashed lines).

the passband and stopband details. The characteristics of the modified FRM filter
referred to as Filter 4 are included in Table 5.

6. Quasi-equiripple efficient FRM filter

Comparing the two algorithms, we notice that whereas Algorithm 1, given in
Section 4, is iterative (the FRM subfilters are repeatedly designed until a quasi-
equiripple response is achieved), Algorithm 2, given in Section 5, is not. However,
the main difference between these two methods is that Algorithm 1 uses more
zeros within the critical bands than Algorithm 2, in order to force the quasi-
equiripple response (see the stopband details in Figures 5 and 7, respectively).
This occurs because Algorithm 2 judiciously solves the approximation problem
in the critical bands with the WLS-Chebyshev scheme. In this way, Algorithm 2
has more degrees of freedom to minimize the objective function in the remaining
bands, thus improving the overall FRM frequency response. These two algorithms
can then be merged to obtain a modified FRM design. The idea is to start with
Algorithm 2 to generate an initial design for Algorithm 1. In this manner, Algo-
rithm 2 is used to obtain a computationally efficient design, while Algorithm 1 is
iteratively used to force a quasi-equiripple response on the resulting filter.

Example 4. Using the combination of Algorithm 2 and Algorithm 1 (in this order)
to design the filter specified in Example 1, yields the setup Filter 5, whose charac-
teristics are given in Table 5. From this table, we notice that the improvements
of Filter 5 over Filter 4 are very small, illustrating that the design generated
by Algorithm 2 has already presented a near-optimal response. The response of
Filter 5 is seen in Figure 7 (solid line), where the quasi-equiripple nature is clearly
observed.
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(b) Passband detail.
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(c) Stopband detail.

Figure 7. Magnitude response of efficient (dashed line) and quasi-equiripple efficient (solid line) FRM
filters using the concept of critical bands in Examples 3 and 4.
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Table 5. Filter characteristics using the concept of critical bands in Examples 3 and 4

Filter 4 Filter 5

A p (dB) 0.1960 0.1920
Ar (dB) 40.11 40.44
Nb 56 56
Nm+ 32 32
Nm− 26 26
L 7 7
FRM order 424 424
Number of coefficients 58 58

7. Conclusions

Three modifications on the FRM design method for FIR filters were introduced.
The proposed methods are based on the WLS-Chebyshev approach, which allows
a greater flexibility to exploit the weighting function, given any desired response.
In this manner, one can easily control the resulting magnitude response by increas-
ing or decreasing the weight function in the desired frequency bands according to
some predetermined error function. Using this approach, we can design FRM
filters with relaxed sets of specifications, yielding computationally efficient FRM
filters with quasi-equiripple responses. Examples indicate that the computational
reduction is about 15% of the total computational complexity of the standard FRM
filter (using the concept of “don’t care” bands for the masking filters).
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