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A new cosine-modulated filter bank (CMFB) structure is proposed based on the
frequency-response masking (FRM) approach using masking filter decomposition. The
resulting structure, the so-called FRM2-CMFB, presents reasonable computational com-
plexity (number of arithmetic operations per output sample) and allows one to design
filter banks with extremely large number of bands. The examples include the use of
M = 1024 bands, where the standard minimax method cannot be employed. These ex-
amples indicate that the reduction in computational complexity can be as high as 60%
of the original FRM-CMFB structure, which does not use masking filter decomposition.
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1. Introduction

The frequency-response masking (FRM) approach is an efficient method for de-

signing linear-phase FIR digital filters with general passbands and sharp transition

bands. With such method, by allowing a small increase in the overall filter order, it

is possible to reduce the number of coefficients to about 30% of the number required

by a minimax FIR direct-form filter.1

The cosine-modulated filter banks (CMFBs) are very popular in applications

requiring large number of subbands due to their easy design (based solely on a

single prototype filter) and computationally efficient implementation.2–6

In this paper, we analyze the use of the FRM approach to design the proto-

type filter of a CMFB. The narrowband-CMFB case is considered where standard

minimax method fails to converge and even the FRM-CMFB7 structure presents

high computational complexity. A new structure is then introduced, the so-called

FRM2-CMFB, where the original FRM masking filter is decomposed as a cascade

of two filters, namely a second stage interpolated base filter followed by the corre-

sponding masking filters. The result is the further reduction in the computational

1
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complexity of the CMFB implementation, when compared to the FRM-CMFB, and

the possibility of designing filter banks with large number of bands.

The organization of this paper is as follows: In Secs. 2 and 3, we describe the

basic concepts behind the FRM and CMFB methods, respectively. In Sec. 4, the

FRM-CMFB structure presented in Ref. 7 is revised. A narrowband CMFB design

is then reviewed as a motivation to introduce the FRM2-CMFB structure in Sec. 5.

The examples are included to illustrate the results achieved with the proposed

method.

2. The FRM Method

In the FRM technique, a lowpass base filter is interpolated by a factor of L, Hb1(z
L),

what generates a repetitive frequency spectrum whose output signal is processed

by the so-called positive masking filter, G1(z). Similarly, the complement of this

repetitive frequency response, Hb2(z
L), is cascaded by the negative masking fil-

ter, G2(z). In such scheme, both masking filters must keep the desired spectrum

repetitions within the overall passband, while eliminating the undesired spectrum

repetitions. The output of both masking filters are then added together to form the

desired overall response. This entire procedure is represented by

H(z) = Hb1(z
L)G1(z) + Hb2(z

L)G2(z) (1)

and is illustrated in Fig. 1, where one can clearly see the sharp transition nature of

the resulting filter.
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Fig. 1. FRM operation: The combination of the frequency responses in the direct and comple-
mentary branches generates the FRM filter with general passband and narrow transition band.
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If the base filter has linear phase and an even order, Nb, its complementary

version can be obtained by subtracting the output signal of Hb1(z
L) from a delayed

version of the input signal obtained at its central node, that is

Hb2(z
L) = z−Nb/2 − Hb1(z

L) = z−Nb/2 −

Nb
∑

i=0

hb(i)z
−Li , (2)

where hb(n) is the impulse response of the base filter. Hence, under such conditions,

no additional complexity is required to implement the complementary filter Hb2(z
L)

in the FRM scheme. If the passband is narrow enough when compared to the desired

transition band, it is possible to eliminate the FRM complementary branch and

further reducing the number of coefficients in the resulting filter.1 Such case of

CMFBs with large number of bands is addressed in this paper.

3. The CMFB Structure

CMFBs are a commonly used tool in signal processing applications.2,3,8,9 The main

advantages of CMFBs include its simple design, as only one prototype filter is

required, since the analysis and synthesis filter banks are obtained by modulating

this filter with a proper set of cosine functions, and its computationally efficient

implementation. The CMFB prototype filter is characterized by a 3-dB attenuation

point and the stopband edge frequency given by

ω3dB ≈
π

2M
; ωs =

(1 + ρ)π

2M
, (3)

where ρ is the so-called roll-off factor that controls the amount of overlapping

between adjacent bands. If the prototype filter has order Np and transfer function

Hp(z) =

Np
∑

n=0

hp(n)z−n , (4)

then the impulse responses of the analysis and the synthesis filters are given by

hm(n) = 2hp(n) cos

[

(2m + 1)(n − Np/2)π

2M
+ (−1)m π

4

]

, (5)

fm(n) = 2hp(n) cos

[

(2m + 1)(n − Np/2)π

2M
− (−1)m π

4

]

, (6)

respectively, for m = 0, 1, . . . , (M − 1), and n = 0, 1, . . . , Np.

If the CMFB prototype filter has (Np + 1) = 2KM coefficients, then we can

perform a polyphase decomposition on Hp(z), with 2M components, as follows

Hp(z) =
2M−1
∑

j=0

[

cm,jz
−j

K−1
∑

k=0

(−1)khp(2kM + j)z−2kM

]

=

2M−1
∑

j=0

z−jEj(z
2M ) (7)
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Fig. 2. Efficient CMFB structure.

with

Ej(z) =
K−1
∑

k=0

hp(2kM + j)z−k , (8)

for j = 1, . . . , 2M .

Therefore, after some standard algebraic manipulations,2 the analysis filters can

then be written asa

Hm(z) =

2M−1
∑

j=0

[

cm,jz
−j

K−1
∑

k=0

(−1)khp(2kM + j)z−2kM

]

=

2M−1
∑

j=0

cm,jz
−jEj(−z2M ) , (9)

for m = 0, 1, . . . , (M − 1). Based on such description, the analysis filter bank can

be efficiently implemented as given in Fig. 2, where I is the identity matrix, J is

the reverse identity matrix, and each element of the DCT-IV matrix is given by

[CIV]m,n =

√

2

M
cos

[

2m + 1

2M

(

n +
1

2

)

π

]

. (10)

4. The FRM-CMFB Structure

Let us consider the FRM-CMFB structure where the FRM approach is used to

design the prototype filter of a CMFB. Assume also that we are mainly interested

on the narrowband filter case, where the complementary branch is absent from the

aA similar decomposition can be performed to the synthesis filters.
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FRM structure.b In such case, the transfer functions for the analysis filters are given

by

Hm(z) =
N

∑

n=0

cm,n(hI
b1 ∗ g1)(n)z−n , (11)

where the term (hI
b1 ∗ g1)(n) denotes the convolution between the interpolated base

filter and the positive masking filter responses, and N is the overall order of the

FRM filter. The key point in the FRM-CMFB structure is to find out how to obtain

a computationally efficient polyphase decomposition of this convolution operation.

Assuming that Hb1(z) and G1(z) have orders Nb and Nm, respectively, and

using the definition of convolution, Eq. (11) can be rewritten as

Hm(z) =

Nb
∑

i=0

[

hb(i)z
−Li

Nm
∑

n=0

cm,(n+Li)g1(n)z−n

]

. (12)

It can then be shown that if the interpolation factor can be written as7

L = 2KaM +
M

Kb
, (13)

where Ka ≥ 0 and Kb > 0 are integer numbers, then the analysis filters can be

expressed as

Hm(z) =

Q−1
∑

q=0

[

z−LqH ′

b1q(−zLQ)

2M−1
∑

j=0

cm,(n+ M
Kb

q)z
−jE′

j(−z2M )

]

, (14)

where

H ′

b1q(z) =

Kc−1
∑

k=0

(−1)Kaqhb(kQ + q)z−k , (15)

for q = 0, 1, . . . , (Q − 1), where Q = 2Kb and (Nb + 1) = QKc. Then, an efficient

FRM-CMFB structure results, where the total number of coefficients is equal to

M = Nb + Nm + 1 (16)

without taking into account the lower branch of the FRM structure.

Example 1. In this example, we design a CMFB with M = 1024 channels, using

a roll-off factor of ρ = 0.1, a maximum bandpass ripple of Ap = 0.2 dB, and

a minimum stopband attenuation of Ar = 50 dB. The standard minimax design

would require a prototype filter of order N = 88 865, which is an impractical option.

bThe general case is addressed, for instance, in Ref. 7.
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For this design, by selecting Ka = 0 and Kb = 4, such that L = 256 (which cor-

responds to Q = 8 polyphase components for the base filter) we obtain a prototype

filter described in Table 1. This design results on a total of M = 1147 coefficients,

corresponding to Md = 574 distinct coefficients. As we noted, the masking filter will

have less than 2M coefficients, therefore several lines of the FRM-CMFB structure

can be removed, simplifying the resulting filter even further.

Table 1. FRM-CMFB characteristics in Example 1.

L Nb N+ N− M Ap Ar

256 344 801 0 1147 0.08 dB 62 dB
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Fig. 3. Magnitude responses of Example 1: (a) Prototype filter; (b) Filter bank (bands 0 to 15).
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The partial magnitude response for the prototype filter can be seen in Fig. 3(a),

and the 16 first channels of the corresponding filter bank are depicted in Fig. 3(b).

5. The FRM2-CMFB Structure

As discussed above, the FRM method can be an efficient way to design CMFB

prototype filters, particularly in cases where the number of bands tends to be very

large, and the prototype-filter order reaches impractical levels. In fact, there are

cases, as the one illustrated in Example 1 that even the FRM-CMFB tends to

present reasonably high computational complexity. The structure can then be fur-

ther simplified by designing the prototype filter with another stage of the FRM

method to form the original masking filter. This technique is referred to as a two-

stage FRM method, if only the upper branch is present in the original FRM filter

(as in the case addressed in this paper), or masking filter factorization,10 if the two

FRM branches are present in the original design.

Thus, by using the two-stage FRM method to design the CMFB prototype filter,

the resulting structure, the so-called (FRM2-CMFB), is characterized by the block

diagram depicted in Fig. 4. In the FRM2-CMFB structure, we can then write

Hm(z) =

N
∑

n=0

cm,n((hI
b1 ∗ hI

b

′

) ∗ g1)(n)z−n , (17)

where (hI
b1 ∗ hI

b
′

)(n) denotes the convolution of the two interpolated base filters.

Notice, however, that this convolution must present an overall interpolation factor

that satisfies Eq. (13). For instance, if L is a multiple of L′, we can write

Hm(z) =

NB
∑

i=0

[

(hI2
b1 ∗ h′

b)(i)z
−L′i

Nm
∑

n=0

cm,(n+L′i)g1(n)z−n

]

, (18)

where NB is the order of the convolution (hI
b1 ∗ hI

b

′

)(n), and hI2
b1 represents the

original base filter interpolated by a factor of L/L′. From Eq. (18), the values

of cm,(n+L′i) depend only on L′, and therefore the two base filters together will

not misalign the DCT-IV terms in the masking filter decomposition. We can then

rewrite Hm(z) as

Hm(z) =

Q′
−1

∑

q=0

[

z−L′qH̄b1q(−zL′Q′

)

2M−1
∑

j=0

cm,(n+ M

K′

b

q)z
−jE′

j(−z2M )

]

, (19)

Interpolated
filter by �
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filter (+)
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Fig. 4. CMFB prototype filter using the two-stage FRM method.
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where Q′, L′, and K ′

b are the respective counterparts of Q, L, and Kb, in

the polyphase decomposition of the second base filter, H ′

b(z), and H̄b1q(−zL′Q′

)

represents the z-transform of the convolutions between hI2
b1 and each polyphase

component of H ′

b(z), the second base filter. It is possible, however, in the z do-

main to treat each of these convolutions as the cascade of two filters, turning

Eq. (19) into

Hm(z) = Hb1(−zL)

Q′
−1

∑

q=0



z−L′qH ′

bq(−zL′Q′

)
2M−1
∑

j=0

cm,(n+ M

K′

b

q)z
−jE′

j(−z2M )



 , (20)

where H ′

bq(z) is the qth polyphase component of H ′

b(z), for q = 0, 1, ..., (Q′ − 1).

From this equation, we notice that by using the two-stage FRM method to design

prototype filter for a CMFB, it is necessary to decompose the second-stage base

filter by a factor of Q′ = 2M/L′, and to introduce a slightly changed version of the

interpolated base filter, Hb1(−zL), at the input of the FRM-CMFB. This leads to

the so-called FRM2-CMFB structure depicted in Fig. 5.

������� �	��
 �
�������

���� � � - ������� ��� ��� �  � �
-
����! � � � � �

I-(-1
�
"

J

#$#�#
� ��%
 � - � ��� � ��� ��� �

��� ��� �  
 �
-
����! � � � � �

��� ��� �
.
.
.

��� ��� �  � -1
�
-
����! � � � � �.

.

.

��� ��� �
��� ��� �  � �

-
� ��! � � � � �

-(-1
�
"

I-J

#�#$#
��� ��� �
��� ��� �  � +1

�
-
����! � � � � �

��� ��� �
.
.
.

��� ��� �  �&� -1
�
-
����! � � � � �.

.

.

��� ��� �

')( 
+*�, " �.-�/ �

� -1
� -1

� -1
� -1

� -1
� -1

� -1
� -1

� -1
� -1

� -1

� -1

� -1

� -1

� -1

� -1

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

� -2

� -1

Fig. 5. Block diagram of the FRM2-CMFB using the two-stage FRM method to design the
CMFB prototype filter (the DCT-IV block is not shown).
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Table 2. FRM2-CMFB characteristics in Example 2.

L
′

N
′
b

N
′
+ N

′
− M Ap Ar

16 66 49 0 462 0.02 dB 60 dB
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Fig. 6. Magnitude responses of Example 2: (a) Prototype filter; (b) Filter bank (bands 0 to 15).

Example 2. In this second example, we design the filter bank described in Exam-

ple 1 using the FRM2-CMFB method. In this case, the original base filter remains

unchanged while the masking filter is decomposed into two new filters. For the

second-stage base filter the interpolation factor was chosen to be L′ = 16, corre-

sponding to Q′ = 128, yielding the filter characteristics shown in Table 2 and the

magnitude responses seen in Fig. 6. Thus, in this case, for the complete FRM2-
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Table 3. FRM-CMFB characteristics in Example 3.

L Nb N+ N− M

1024 88 7613 0 7703

Table 4. FRM2-CMFB characteristics in Example 3.

L′ N ′
b

N ′
+ N ′

− M Ap Ar

64 116 189 0 396 0.045 dB 60 dB

CMFB design only a total of M = 462 coefficients is needed. Moreover, the struc-

ture may become even more compact, since the second-stage positive masking filter

presents only 50 coefficients, while Q′ = 128 polyphase components are used for

the second-stage interpolated base filter.

Example 3. In this example, the same filter bank of Example 1 is designed with

the FRM2-CMFB method, starting, however, from a FRM-CMFB with L = M =

1024, thus requiring only Q = 2 polyphase components for the base filter. In such

case, the FRM-CMFB is characterized in Table 3, where we notice the extremely

high order required by the original masking filter.

Using the FRM2-CMFB structure to reduce the computational complexity, with

L′ = 64, corresponding to Q′ = 32 polyphase components for the second-stage base

filter, we end up with the filter-bank characteristics shown in Table 4. From this

table, one clearly notices that the total number of coefficients is drastically reduced

to M = 396, which is even smaller than the results achieved in Example 2. The

magnitude responses for this FRM2-CMFB prototype filter and overall filter bank

are seen in Fig. 7.

6. Conclusion

It was shown how the frequency-response masking (FRM) approach can be applied

for designing the prototype filter in cosine-modulated filter banks (CMFBs). In

narrowband cases (which arise when the number of filter bands become extremely

large), it was verified that the standard minimax method requires a prohibitive

filter order, and even the FRM-CMFB tends to present significant computational

complexity. We then address this problem by introducing the so-called FRM2-

CMFB structure which uses a two-stage FRM approach where the original FRM

masking filter is decomposed into two filters, namely the second-stage interpolated

base and masking filters. The design examples illustrated how the proposed FRM2-

CMFB can significantly reduce the computational complexity of the FRM-CMFB

structure in cases of narrowband CMFBs.
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Fig. 7. Magnitude responses of Example 3: (a) Prototype filter; (b) Filter bank (bands 0 to 15).
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