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Abstract—Several current applications related to signal com-
pression and representation and high-speed transmission require
very selective filter banks/transmultiplexers. A possible solution
is to employ the cosine-modulated filter banks/transmultiplexers
(CMFBTs) where the prototype filters satisfy demanding con-
straints with respect to both the total stopband energy and
maximum stopband ripple. This work proposes an efficient pro-
cedure to design nearly-perfect reconstruction CMFBT prototype
filters with peak-constrained least-squares characteristics using a
modified weighted least-squares algorithm. Substantial flexibility
is added in the design of the magnitude response of the prototype
filter, ranging from minimum stopband energy to minimum stop-
band ripple, which may be required in many applications. Some
constraints are imposed to the CMFBTs in order to control the
direct transfer and aliasing distortion functions, related to the in-
tercarrier and intersymbol interferences. Algebraic simplifications
are also provided on the overall objective function and associated
constraints, leading to substantial reduction on the computational
burden of the optimization process. The procedure is proven to be
very powerful in designing CMFBT systems satisfying multiple
constraints as indicated by numerical examples.

Index Terms—Cosine-modulated filter banks (CMFBs), trans-
multiplexers.

I. INTRODUCTION

F ILTER banks and transmultiplexers consisting of very
selective subfilters have found applications in compres-

sion and representation of some specific signals [18], and in
high-speed transmission over dispersive channels [20], [21]. In
particular, communication systems based on multicarrier mod-
ulation have been used in several applications due to the ability
of splitting the transmitted signal into almost orthogonal
subbands, which can be equalized separately [2]. Most of these
systems are based on discrete multitone modulation (DMT)
[4], [24] or discrete wavelet multitone modulation (DWMT)
[6], [21], where a transmultiplexer configuration is used. As
main examples of DMT systems are the ones based on the
discrete Fourier transform (DFT) and an inverse DFT (IDFT)
transforms, which find application in digital video and audio
broadcasting and the recently proposed principal component
filter bank (PCFB) [24], among others. As an example of a
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DWMT system is the cosine-modulated filter bank (CMFB)
which was proposed in the design of very high rate digital
subscriber line (VDSL) modems [25]. The DFT-based multi-
carrier modulator presents poor frequency separation among
its subbands, whereas the DWMT may present very selective
subchannels, depending on the choice of the bank structure
[21]. The PCFB may be an optimal filter bank in the sense
of maximizing the bit rate for a given constrained transmitted
power. The cosine-modulated filter bank/transmultiplexer
(CMFBT) is an attractive choice for the analysis and synthesis
filters of a DWMT multichannel system due to its simplicity
and fast implementation [23]. Also, subband coding based on
filter banks has become a very popular tool for signal compres-
sion, due to the inherent spectral analysis performed by their
orthogonal subfilters. Both transmultiplexer and filter bank
are known as multirate systems, where in the transmultiplexer
structure, the analysis and synthesis filters are placed in reverse
order with respect to the filter bank. In this way, the figures of
merit of both structures are closely related [25], as will also be
explored in the present paper.

The filter design approach minimizing the stopband energy
is called least squares (LS), whereas the one minimizing the
maximum stopband ripple is usually referred to as the peak-
constrained or minimax method. This paper presents a numer-
ical method for designing nearly perfect reconstruction (NPR)
CMFBTs satisfying a tradeoff between both LS and minimax
objectives, where solutions ranging from minimum stopband
energy to minimum stopband ripple are possible. The result is
the so-called peak-constrained LS (PCLS) solution. The pro-
posed method is based on a modified version of the weighted LS
(WLS) algorithm [14] known as the WLS-Chebyshev algorithm
[7], but substantially improved. The main contribution is the
ability of optimizing an objective function that combines both
stopband measurements (energy and maximum ripple) subject
to nonlinear constraints. The result is a very flexible design pro-
cedure for optimal CMFBTs in the sense of achieving the non-
linear constraints with minimized stopband energy and ripple.
Numerical efficiency of the design procedure is also established
by taking advantage of a series of algebraic simplifications in
the overall objective function and associated constraints as pro-
vided in this paper. It is worth mentioning that the PCLS is a cri-
terion introduced in [1] which qualifies a given design solution,
whereas the WLS-Chebyshev is an algorithm used to achieve
the PCLS solution. The algorithm proposed in this article is a
modified version of the WLS-Chebyshev.
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The remaining of the paper is organized as follows. Section II,
presents an introduction to the CMFBT structures. In Section III
the optimized design of CMFBTs is discussed based on the
PCLS criterion. Section IV presents the WLS-Chebyshev al-
gorithm as an efficient and powerful alternative to determine
the PCLS solution for practical CMFBTs. In Section V, numer-
ically efficient forms of the PCLS objective-function gradient
vector and design constraints are provided in order to generate
a simplified optimization procedure. Section VI presents some
CMFBT designs obtained using the proposed WLS-Chebyshev
procedure utilizing a numerically efficient routine. At the end
of the paper, an Appendix provides all algebraic development
related to the simplifications included in Section V.

II. COSINE-MODULATED FILTER BANKS AND

TRANSMULTIPLEXERS

CMFBTs are multirate structures that rely on the design of
a single prototype filter for both analysis and synthesis banks,
which will be modulated to generate all subfilters of the filter
bank. Moreover, there is a fast implementation for the CMFBTs
based on the DCT-IV transform [8], [23], and, as a consequence,
they have been used in several applications like DSL modems
[6], [20], [25] and subband coding [18].

Assuming that the prototype filter has an impulse response
of order , its transfer function is expressed as

(1)

(2)

(3)

The fast implementation of the CMFBT presented in [23] re-
quires an order for the prototype filter, with

being a positive integer, which determines the length of the
polyphase components of .

The analysis and synthesis subfilters are cosine-modulated
versions of the prototype filter, which can be described by

(4)

(5)

where , , and
denotes the complex conjugate operator.

Fig. 1 shows the block diagram of the filter bank described
above, with the input–output relation being described by [23]

(6)

The first term in (6), , is the direct transfer function and
must be the only term in an alias-free design, which includes the
PR filter bank as a particular case. The second term, involving
all other , contains the aliasing transfer functions, which
quantify the influences in a given band from all other bands.
These terms are expressed by

(7)

Fig. 1. M -channel maximally decimated filter bank.

The maximally decimated -channel transmultiplexer
(TMUX) system is a multirate system where the positions
of the analysis and synthesis banks are reversed to form a
system with input/output channels, as depicted in Fig. 2 [9],
[23]. This structure interpolates and filters each input signal,
adding the resulting signals on each branch to form a single
signal for transmission over a given channel . At the receiver,
the signal is then split back into -channels to generate the
desired outputs. The design problem of such a system can
be simplified by assuming that the channel response is ideal

or a pure delay. Then, in the PR case, each output
signal is identical to its equivalent input, whereas in the NPR,
small interferences among the subchannels are present. In order
to keep the PR/NPR property of the bank, a small delay
may be inserted in the TMUX system before the demultiplexer
block [23].

The general relation that describes the transfer functions of
the TMUX system is given by [9]

(8)

where

(9)

(10)

and

(11)

for . The matrix is the
so-called transfer matrix whose elements, , represent
the transfer function between the interpolated input and the
interpolated output . Thus, the main diagonal entries of this
matrix, , represent the transfer functions of each
subchannel, and the remaining terms account for the crosstalk
between two different subchannels. In the NPR case, no restric-
tions apply to the transfer function matrix, whereas in the PR
case, the crosstalk terms must be zero and the diagonal terms
become simple delays [25].

In a TMUX system, one would be interested in estimating the
total intersymbol interference (ISI) and intercarrier interference
(ICI) figures of merit, which are given by [3]

(12)

(13)
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Fig. 2. M -channel maximally decimated TMUX system.

where is the ideal impulse, is a proper delay,
is the impulse response for the th subchannel, and the term

is the crosstalk between the th and th subchannels,
whose expression is given by (11).

In the design of filter banks, some constraints are imposed by
the nature of the problem, such as the maximum overall ampli-
tude distortion, , and aliasing interference, , given by

(14)

(15)

where is the total number of constraints,1 with the
operator denoting the integer part of .

As verified in [23], the ISI and ICI in a TMUX system
are closely related to the overall amplitude distortion and the
aliasing interference in a filter bank, respectively. Therefore,
filter banks with reduced direct and aliasing transfer distor-
tions and selective frequency response are TMUX systems
with reduced ISI and ICI with great spectral containment and
vice-versa.

III. CMFBT OPTIMIZATION PROBLEM

In the design of digital filters, it is common to find appli-
cations requiring the magnitude response of the resulting filter
error function to be minimized in an LS or minimax sense. In
some cases, the constraints imposed by the problem automati-
cally determine the passband gain, which, consequently, is not
taken into account in the original objective function. In this way,
the LS and minimax objective functions for the design of a
low-pass filter can be defined as

(16)

with and , respectively, where
is the frequency response of the prototype filter and

is its stopband edge frequency. For finite-impulse response
(FIR) filters, the objective function can be optimized analyt-
ically, as described, for instance in [8], [22], while the minimax

optimization problem can be solved using the Parks–Mc-
Clellan algorithm [19].

Traditional filter design algorithms [8], however, are not suit-
able to solve the general CMFBT optimization problem due to
the required nonlinear constraints. In such cases, the problem

1Due to some symmetry in the aliasing terms, as stated in [22].

of finding an optimized solution can be solved with a modified
objective function , that combines the original objective
function with a weighted set of constraints, such that

(17)

where is as given in (2), considering only coef-
ficients due to the linear-phase property of the prototype filter,

is the vector of constraint weights, and is the vector of
constraints, that is

(18)

(19)

where , as stated before.
The minimization of in (17) will be performed using

a modified WLS-Chebyshev introduced in Section IV in order
to achieve the PCLS solution. The minimization problem can
be solved using quadratic programming (QP) algorithms [16],
which whenever possible require the first and second derivatives
of to simplify its implementation and improve the per-
formance. With the QP algorithms, the constraint weights are set
by the designer. An alternative is to use a sequential QP (SQP)
algorithm [16], which optimally sets the weights of the con-
straints based on the method of Lagrange multipliers with the
Kuhn–Tucker conditions [16]. The problem of finding the op-
timum PCLS filter subject to nonlinear constraints was studied
in [1], leading to a more complex design than the one proposed
here. The design of PCLS 2-band filter banks can be found in
[5]. A more generic treatment is found in [22], where a QP algo-
rithm is used to optimize an objective function formulated sim-
ilarly to (17). The spectral characteristics of the prototype filter
is therein shaped with the LS or Minimax criterion. Another in-
teresting technique is given in [17], where the prototype filter
is constrained to be a spectral factorization of a Nyquist filter
with LS characteristics. The result is a filter bank without direct
transfer distortion. The use of a SQP algorithm was necessary
to perform the optimization.

In practice, to control the aliasing distortion and the overall
direct transfer of the filter bank, the following constraints are
defined:

(20)

(21)

for and , since the functions
are periodic with period , property which will
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be discussed later in Section V. As observed, these constraints
depend on , where by using more discrete points in the fre-
quency grid leads to a more accurate design, but with higher
computational complexity. As stated in [11], there should be at
least points in the frequency grid, leading to a total of about

constraints. The parameters and adjust the
tightness of the constraints attainment.

In Section V, the connections between (20) and (21) with (19)
will be made clear.

This article is totally dedicated to the design of NPR
CMFBTs, which is in general more complicated than the
PR design using power-complementary lattice sections [12]
because the nonlinear constraints of the problem are inherently
attained in the last one, but leads to more flexible implementa-
tions. Nevertheless, the NPR CMFBT has a fast implementation
[8] but, unfortunately, the fastest implementation [18] available
requires the use of PR prototypes.

IV. PCLS CMFBTS WITH MODIFIED

WLS-CHEBYSHEV APPROACH

In this section, the WLS-Chebyshev algorithm is introduced
along with the proposed modified WLS-Chebyshev aiming to
achieve improved performance and to satisfy the nonlinear con-
straints imposed by the optimization problem inherent from the
filter bank or TMUX design.

A. WLS-Chebyshev Algorithm

As given in [13] and [14], the solution of the minimax
problem can be approximated by successive weighted min-
imizations. An approximation of the weighted function in
(16) is obtained by replacing the integral by a weighted summa-
tion at a discrete set of frequencies, leading to

(22)

where is the weighting function, at the th iteration,
with nonnegative samples, and is the given frequency grid
interval.

To perform the PCLS optimization of an FIR filter, one can
minimize (22) with the WLS-Chebyshev method described
in [7], which is capable of achieving an excellent tradeoff
between the LS and minimax norms. With the WLS-Chebyshev
algorithm, the optimization procedure gradually modifies the
objective function at each iteration by weighting each point in
the frequency grid by the quadratic error between the desired
(zero) and the actual responses in the stopband [7]. This is
achieved by updating the weighting function at each iteration

in the form

(23)

(24)

with

(25)

and

(26)

where the frequencies , arranged in increasing order, for
, correspond to the peaks of the error func-

tion in the stopband, at the th iteration. In this way, the
function becomes the envelope of at that iter-
ation. The parameter uniquely characterizes the WLS-Cheby-
shev design, as it determines the frequency at which the proto-
type response switches from the minimax (equiripple) to the LS
behavior. In particular, the LS and minimax designs correspond
to and , respectively. As a
result is the index of the last peak of the error function, since
the stopband edges are also considered as peaks [7]. Fig. 3 de-
picts the error function (dotted line) for a generic low-pass filter,
along with its envelope (dash-dotted line) and the modi-
fied envelope (solid line), which is forced to be constant
starting at frequency ( in the example).

B. Modified WLS-Chebyshev Algorithm

Now, a procedure for the design of PCLS prototype filters
for CMFBTs based on the formulation of the modified objec-
tive function is presented. Suppose that takes into
account the WLS objective function and the nonlinear
constraints of the problem, such that

(27)

The steps describing a smoothly convergent procedure are as
follows:

1) Set the number of bands and the overlapping factor
. Choose any LS behaved FIR prototype filter of length

as the initial solution or, alternatively, use a PR pro-
totype as described in [12], [22]. Set (first iteration)
and the parameter that uniquely determines the WLS
weighting function as

(28)

with given by (24), which must be evaluated over
a dense frequency grid, with points, and where

(29)

is the mean value of the envelope function evaluated at the
th iteration, and

(30)

is updated on each iteration by using the parameter ,
starting with . A good value for this parameter
was found to be . Care should be taken to avoid
that becomes very small. A good range for this param-
eter is given by [14] , what means that
can even be greater than the value set by our procedure.

Choose a QP algorithm, setting up the constraint
weights in the vector and providing the optimization
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Fig. 3. Error function E(!) (dotted line), and its derivations B(!) (envelope, dash-dotted line) and V (!) (solid line), for a generic low-pass filter.

algorithm with the function and its derivatives.
Optimize efficiently the prototype filter coefficients,
keeping the WLS weighting function unaltered.

2) Set . If is reached or any other tolerance
criteria is met, stop. Otherwise, evaluate and as in
(24) and (29) and update as follows:

(31)

where

(32)

with updated using (30). With this new value of
, evaluate using (22). Then, optimize
in (27) efficiently using the QP algorithm, and

return to Step 2). In general, is a good
range for the number of iterations. If the choice is for
the SQP algorithm, one must determine and the
constraints separately, along with their derivatives. It is
worth mentioning that, when using a SQP-type algorithm,
the vector of constraint weights is not used and the
objective function reduces to

The proposed procedure uses a normalized weighting func-
tion [given by (28) and (31)], similar to the one proposed in [14],
in order to ensure that the dynamic range of the weighting func-
tion are kept small. The main difference is that, here, the update
is made in a smoother manner. Second, the weighting function
has an extra parameter at the nonequiripple part of the stop-
band, avoiding that the weighting function becomes small at that
region, ensuring that large ripples will never occur there.

V. SIMPLIFIED COMPUTATION OF CONSTRAINTS AND

GRADIENT VECTORS

A. Simplified Constraints

The large computational complexity to determine the con-
straints can be greatly reduced by defining the new constraints
as [see (20) and (21)]

(33)

which apparently have high computational complexity. How-
ever, all functions can be evaluated using a simplified
formulation, as given in Appendix, such that

(34)

where

(35)

with given by

(36)

On the right-hand side of (35), the variable is multiplying
, what makes the trigonometric function periodic

with period . The proposed simplified formulation for
the constraints enables a drastic reduction in the computational
burden when compared with the original formulation, given in
(7). For instance, assuming , the reduction factor is ap-
proximately [11].

B. Simplified Gradient of

Given the objective function formulated in (22), and the def-
inition of the modified constraints in (33), it is possible to de-
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rive an equation for the partial derivatives of relative to
the prototype filter coefficients, required by optimization algo-
rithms based on quasi-Newton variants (e.g., the DFP and BFGS
algorithms) [16]. In order to accomplish this, we can define

(37)

where

(38)

is the zero-phase frequency response of .
Rewriting (22) with the aid of (37), the following equation

results:

(39)

and thus, its partial derivative with respect to , for
(with odd), becomes

(40)

C. Simplified Gradient of the Constraints

To determine the constraint derivatives, we can write, based
on (33)

(41)

with

(42)
where is the sign of and

(43)

with , for and .

VI. DESIGN EXAMPLES

The prototype filter for an -band CMFBT can be specified
by two cutoff frequencies

(44)

where and are the passband and the stopband edge fre-
quencies, respectively, and is the so-called roll-off factor. It is
desirable that , to keep the NPR property of
the system. A quasi-Newton algorithm with line search, based
on the BFGS algorithm [16], was applied in the optimization
procedure described in Section IV, aiming to achieve improved
performances with respect to and , for a given value of

TABLE I
FIGURES OF MERIT FOR OPTIMIZED LS AND MINIMAX PROTOTYPE FILTERS IN

EXAMPLE 1. IN ALL CASES d = 0:01 AND ISI = �43.0 dB

and a constant overall amplitude distortion. The main idea is to
analyze the behavior of the figures of merit and ICI when
(or ISI) is made constant, for many possible tradeoffs between

and , starting with the LS design ( minimum and
maximum) and finishing with the minimax design ( max-
imum and minimum). All examples were simulated using
Matlab®. Specifically for Example 3, where computational time
was measured, the machine used was an AMD Athlon XP2600
with 516 MB of installed physical memory. At this point it is
worth to reinforce that due to the nonlinearity of the constraints,
the use of QP programming is necessary and not guaranteed to
converge.

Example 1: The modified WLS procedure was applied in the
design of a 32-band CMFBT, to demonstrate how the figures of
merit of such system vary with the parameter of the WLS-
Chebyshev design. The specifications for this design were

(as low as possible)

(45)

which means that the constraint must be attained and the
constraint was free, but the related aliasing distortion must
be kept small.

It is worth mentioning that, in this example, the prototype
filter order is given by . Table I sum-
marizes the results achieved by both LS ( , ) and
minimax ( , ) designs. There is also a comparison
with the LS realization in [22], whose performance is measured
based on the prototype filter coefficients kindly provided by the
respective author. Clearly, both LS designs performed similarly.
The LS case led to the lowest ICI and values, whereas the
minimax to the highest levels of ICI and . Fig. 4 depicts the
main figures of merit as a function of . Since is heavily de-
pendent on the first neighboring subbands of the filter bank, and
the equiripple part of the stopband occupies the bandwidth of
the first neighboring bands, after a given value of the figure of
merit becomes practically constant. This behavior is clearly
depicted in Fig. 4(a) for .

Example 2: This example demonstrates the behavior of the
PCLS design for a fixed prototype filter length and different
tradeoffs of stopband energy and maximum stopband ripple, and
fixed levels of and . The designed system was an 8-band
CMFBT. The specifications were

(46)

meaning that both constraints on and must be attained,
what made this example differ from the first one where the
aliasing distortion was left free but desired to be small.
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Fig. 4. Example 1 WLS-Chebyshev designs: (a) ICI (solid) and d (dash-dot). (b) ISI (solid) and d (dash-dot). (c) E =E tradeoff for different values of J .
(d) Magnitude response of LS design (J = 1) and respective passband detail. (e) Magnitude response for J = 50 and respective passband detail; (f) magnitude
response for minimax design (J = N ) and respective passband detail. (g) LS optimized bank.

According to the specifications, the prototype filter has order
. The purpose of the example was to

compare different PCLS designs for the same levels of and

. There is also a comparison with designs where the constraint
is disregarded like in Example 1. As can be observed in Fig. 5,

both and ISI have similar behavior, and and ICI as well.
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Fig. 5. Example 2 WLS-Chebyshev designs. (a) ICI and d for the constrained d and nonconstrained designs. (b) ISI and d for the constrained d and
nonconstrained designs. (c) E =E tradeoff for the d constrained and nonconstrained designs. (d) Magnitude response of prototype filter for J = 10 and
constrained d with respective passband detail.

The and performances of the constrained designs
were expected to be worse than the nonconstrained ones, as con-
firmed in Table II and from Fig. 5. One can clearly see that
the constraint on the aliasing distortion was responsible for
increasing the stopband energy and maximum stopband
ripple in several designs when compared to the noncon-
strained designs. Depending on the application, for the same
levels of and one may prefer the minimax design if the
maximum ripple in the stopband is the most important param-
eter.

Example 3: Example 3 is shown in Fig. 6. In this example,
CMFBTs with a large number of bands and three different PCLS
tradeoffs were designed and the computational time was mea-
sured to give an idea about the complexity of the proposed al-
gorithm. The design was for 512-band CMFBTs. The specifica-
tions were

(as low as possible)

(47)

which made this example similar to Example 1 but with higher
computational cost.

The figures of merit for this example are listed in Table III. As
mentioned before, the code was not optimized for speed since it
was run in the Matlab® environment, but the computational time
(CT) is still acceptable considering the complexity of the opti-
mization problem. The optimization process takes much longer
if the design is not LS since it requires iterative designs
(see Section IV). In general, the CT is higher for the minimax
design. As seen in Table III, the designs simulated were for LS,
PCLS and minimax objective functions, which were chosen be-
cause they lead, respectively, to the minimal, intermediate and
maximal computational costs and are good representatives of
the PCLS tradeoff curve.

VII. CONCLUSION

A new design procedure for optimizing the prototype filter
of a CMFBT was presented. This new procedure based on the
WLS-Chebyshev algorithm introduced flexibility to the design
of CMFBT prototype filters, enabling a tradeoff between stop-
band energy and maximum attenuation, in a simple and efficient
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Fig. 6. Example 3 WLS-Chebyshev designs: (a) Magnitude response of prototype filter for J = 1 with respective passband detail. (b) Magnitude response of
resulting LS CMFBT bank (8 out of 512 bands). (c) Magnitude response of prototype filter for J = 40 with respective passband detail. (d) Magnitude response of
resulting PCLS CMFBT bank (8 out of 512 bands). (e) Magnitude response of prototype filter for minimax design with respective passband detail. (f) Magnitude
response of resulting minimax CMFBT bank (8 out of 512 bands).

manner. The resulting designs present intermediate levels of ICI
or aliasing distortion for a given level of ISI or amplitude dis-

tortion. Simulation results had shown that, for an ideal channel,
the smaller ICI is achieved by the LS design. From the trans-
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TABLE II
FIGURES OF MERIT FOR OPTIMIZED PCLS PROTOTYPE FILTERS IN EXAMPLE 2. CASES J = 1 AND J = N = 60 CORRESPOND TO LS AND

MINIMAX DESIGNS, RESPECTIVELY. IN ALL CASES d = 0:01 AND IST = �43.0 dB

TABLE III
FIGURES OF MERIT FOR OPTIMIZED PCLS PROTOTYPE FILTERS IN EXAMPLE 3.
CASE J = 1 AND J = N = 1022 CORRESPOND, RESPECTIVELY TO LS AND

MINIMAX DESIGNS. IN ALL CASES d = 0:002 AND IST = �56.0 dB.
CT STANDS FOR COMPUTATIONAL TIME

multiplexer point of view, the lowest ICI attainable for a given
ISI results in an improved performance of the system, since the
reconstructed signal becomes a more accurate copy of the orig-
inal one.

The proposed WLS-Chebyshev optimization along with the
modified objective function evaluated using simplified con-
straints and gradient vectors are the contributions of this article.
They resulted in a flexible PCLS optimization procedure with
greatly reduced computational burden.

APPENDIX

Using (4) and (5), (7) can be rewritten as

since and , for all . Using (1)
and the definition , we get

where is defined as

(48)

where denotes linear convolution and denotes -trans-
form operations. The following lemma is the key to simplify the
optimization problem.

Lemma A.1:

,
(49)

and

,
(50)

which holds the property .
Proof: Equation (49) is proven in [10], while the general

case in (50) follows from rewriting as [11]

(51)
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Using Lemma A.1, then, can be simplified to

(52)

since

(53)

In this way, all functions can be evaluated using this
simplification, convolving the prototype filter with its complex
modulated version, as follows:

(54)

for . Due to the symmetry in the modu-
lation function, it follows that . Hence, one
may evaluate functions only for . If the
prototype filter has a linear phase, then, the functions can
be analytically written as

(55)

which is the -transform of (34).
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